

# **KUBOTA Corporation**

1-2-47 Shikitsu-higashi, Naniwa-ku, Osaka 556-8601 Japan

Corporate Communication Dept. Tel: +81-6-6648-2937 Fax: +81-6-6648-2398



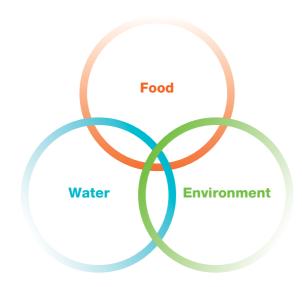








# KUBOTA's Mission


In 1890, Gonshiro Kubota, the founder of KUBOTA started his metal casting business at the age of 19.

Believing that: "If you try hard, you can get it done" and "Do not be afraid of making mistakes," he contributed to society with his business. He became the first producer of iron water pipes in Japan, and later, actualized mechanization of agriculture.

"For the prosperity of society, we need to put all of our efforts into creation."

"Our products should not only be technically excellent, but also useful for the good of society."

The KUBOTA Group inherits the founder's beliefs, grows together with its employees, and continues to be a society-friendly and reliable company, extending its business globally.



# Contributing to the abundant and stable production of food by streamlining of agriculture



As the world's population continues to grow, the stable production of food has become an absolute necessity. Drawing on its rice farming machinery and technologies developed in Japan, KUBOTA has contributed to the elimination of rural labor shortages while increasing agricultural output throughout Asia. Moving forward, the Company will enter the large-scale dry-field agricultural machinery market in earnest in order to realize medium- and long-term growth and to further contribute to the stable production of food on a global scale.

# Contributing to supply and to restore reliable water by enhancing water infrastructures

# Contributing to create a comfortable living environment and to preserve the global environment by enhancing social infrastructures



As our founder, Gonshiro Kubota produced cast iron water pipes in Japan for the first time, KUBOTA's water-related operations have a history that spans over 12 decades. As a comprehensive manufacturer of water-related products that extend from the intake of water to its discharge, KUBOTA contributes to the development of infrastructure in Japan. Looking ahead, the Company will contribute to providing solutions in the areas of water and the environment mainly in Asia, a region that is experiencing remarkable growth.

Rapid economic development in emerging countries has triggered a host of grave environmental issues. KUBOTA has continued to upgrade and expand its technological capabilities in environment-related fields and to protect the global environment since the mid-1960s when the Company first looked to tackle the growing problem of environmental pollution in Japan. Moreover, KUBOTA has operations in construction machinery, air handling units, and vending machines that contribute to the creation of comfortable urban and living environments.

### **KUBOTA Corporation: Kubota Global Identity**

In October 2012, KUBOTA enacted the Kubota Global Identity as a universal corporate principles in order to promote business activities throughout the group based on the spirit and values passed down since the establishment of the Company. The Kubota Global Identity recognizes that food, water and the environment are a singular theme, and the program's "Mission" section states clearly that the goal of the Company is to contribute to the resolution of problems in these areas on a global scale.



### **Spirits**

- Work for the development of society by drawing on all of our capabilities and know-how to offer superior products and technologies.
- Build today and open the way to tomorrow, with the aim of bringing prosperity to the Company and happiness to employees.
- Challenge the unknown with creativity and courage.

### **Brand Statement**

# For Earth, For Life Kubata

### Mission

Food, water and the environment are indispensable for human beings. The KUBOTA Group continues to support the future of the earth and humanity by contributing products that help the abundant and stable production of food, help supply and restore reliable water, and help create a comfortable living environment through its superior products. technologies and services.

### Contents

| KUBOTA's Mission                                                      |    |
|-----------------------------------------------------------------------|----|
| Top Message                                                           |    |
| Management                                                            |    |
| Corporate Governance                                                  | 11 |
| Internal Control System                                               | 13 |
| Economic Report                                                       |    |
| Financial Highlights                                                  | 15 |
| Farm & Industrial Machinery                                           | 17 |
| Water & Environment                                                   | 19 |
| Financial Data                                                        | 21 |
| Social Report                                                         |    |
| Summary of Social Activities –                                        |    |
| Together with Society                                                 | 25 |
| Initiatives to Improve Customer Satisfaction Creating a Rewarding and | 27 |
| Vibrant Work Environment                                              | 31 |
| Contributing to International an Local Societies                      | 37 |
| Reconstruction Assistance Following the Great East Japan Earthquake   | 39 |

| Environmental Report                                                                                 |    |
|------------------------------------------------------------------------------------------------------|----|
| Environmental Management Basic Policy                                                                | 41 |
| Environmental Management Promotion System                                                            | 43 |
| FY2016 Medium-Term Environmental Conservation Targets                                                | 44 |
| Business Activities of the KUBOTA Group that Aims to Contribute to Global Environmental Conservation |    |
| Stopping Climate Change                                                                              | 47 |
| Working towards a Recycling-based Society—<br>Promotion of 3Rs                                       | 49 |
| Working towards a Recycling-based Society—<br>Conservation of Water Resources                        | 51 |
| Controlling Chemical Substances                                                                      | 52 |
| Expanding Lineup of Environmentally Friendly Products                                                | 53 |
|                                                                                                      |    |
| Environmental Management                                                                             | 56 |
| Environmental Education                                                                              | 57 |
| Trends in Major Environmental Indicators                                                             | 58 |
| Status of Environmental Management System                                                            |    |
| Certification Acquisition                                                                            | 59 |
| 1.6                                                                                                  | -  |

| Environmental Accounting                           | 61 |
|----------------------------------------------------|----|
| Receiving Environmental Awards                     | 62 |
| KUBOTA Group Production Sites Data                 | 63 |
| Calculation Standards of Environmental Performance |    |
| Indicators                                         | 69 |
| Third-Party Assurance on Environmental Report      | 71 |
| Third-Party Comments                               | 72 |
| Supplementary Information                          |    |
| Corporate Data                                     | 73 |
| History of KUBOTA's Products                       | 74 |
| Developing KUBOTA business activities              | 75 |
| Global Network                                     | 77 |
|                                                    |    |

currency exchange rates; the occurrence of natural disasters; continued competitive pricing pressures in the marketplace; as well as the Company's ability to continue to gain acceptance of its products.

# **Basic Policy for CSR\* Management**

All KUBOTA Group employees share the KUBOTA corporate principles of Kubota Global Identity and will contribute to our stakeholders and society by conducting corporate activities in which each individual fulfills his or her role and responsibilities. By doing so, they are aiming for the ongoing synergistic development of the KUBOTA Group and society.

\*Corporate Social Responsibility

### Ongoing Synergistic Development of KUBOTA Group and Society

- Ongoing sustainable growth
- Raise corporate value, raise corporate brand profile
- Build on society's confidence in and high reputation for KUBOTA

### **Corporate Principles**

Implementation of **Kubota Global Identity** 

### **Rule of Conduct**

### Compliance with KUBOTA **Group Charter for Action & Code of Conduct**

- 1. Winning Customer Satisfaction Conducting Corporate
   Activities Based on Compliance with Legal Regulations and Ethical Principles
- 3. Respecting Human Rights 4. Building up a Safe and Vibrant Work Environment
- 5. Conserving the Global and Local Environment
- Achieving Symbiosis with International and Local
- 7. Fulfilling Responsibilities for Improving Management Transparency and Accountability

### CSR through **Business Activities**

- Promotion of business activities in food, water and the environment areas
- Business growth by providing products and services that meet the expectations and needs of society
- Efforts that stakeholders will deem

### CSR as Basis for **Business Activities**

- Establish governance system
- Thorough compliance (conduct based on compliance with relevant laws, ethical and moral principles)
- Formulate and strengthen internal

# Providing Value to Society Customers Offering of superior

and services

equitable trade (CSR

Shareholders Maintain stable profits

Contribute to local societies, conserve and beautify the environment

Reduce environmenta

Government Payment of taxes, compliance with laws

and regulations Provision of job

workplaces where it is

For more details on the Kubota Global Identity and the KUBOTA Group Charter for Action and Rule of Conduct please visit our website



http://www.kubota-global.net/csr/index.html

### **Editorial note**

Focusing on exemplary efforts made by the KUBOTA Group in addressing global issues through its business activities, this report is easy to understand and will keep all stakeholders informed.

### Relationship with the information provided on our website

The printed version of this report is concise and clear, focusing on the visual presentation of the Company's activities to make it easier to understand KUBOTA.

The online version is formatted to disclose corporate information, which is continuously reported, in fuller detail and provides a more in-depth view of the content covered in the printed version.



http://www.kubota-global.net/csr/report/pdf/2014/14alldata.pdf

■ Boundary of the KUBOTA REPORT 2014
The KUBOTA REPORT 2014 covers the entire KUBOTA Group, in principle. **Economic Report:** 

The Economic Report contains data on the consolidated accounting based on U.S. accounting standards of generally accepted accounting principles in the United States (U.S. GAAP) Fiscal year 2014: 162 consolidated subsidiaries and 18 affiliated companies accounted for under the equity method.

The Social Report covers social activities carried out by KUBOTA Corporation and some of its affiliates.

### **Environmental Report:**

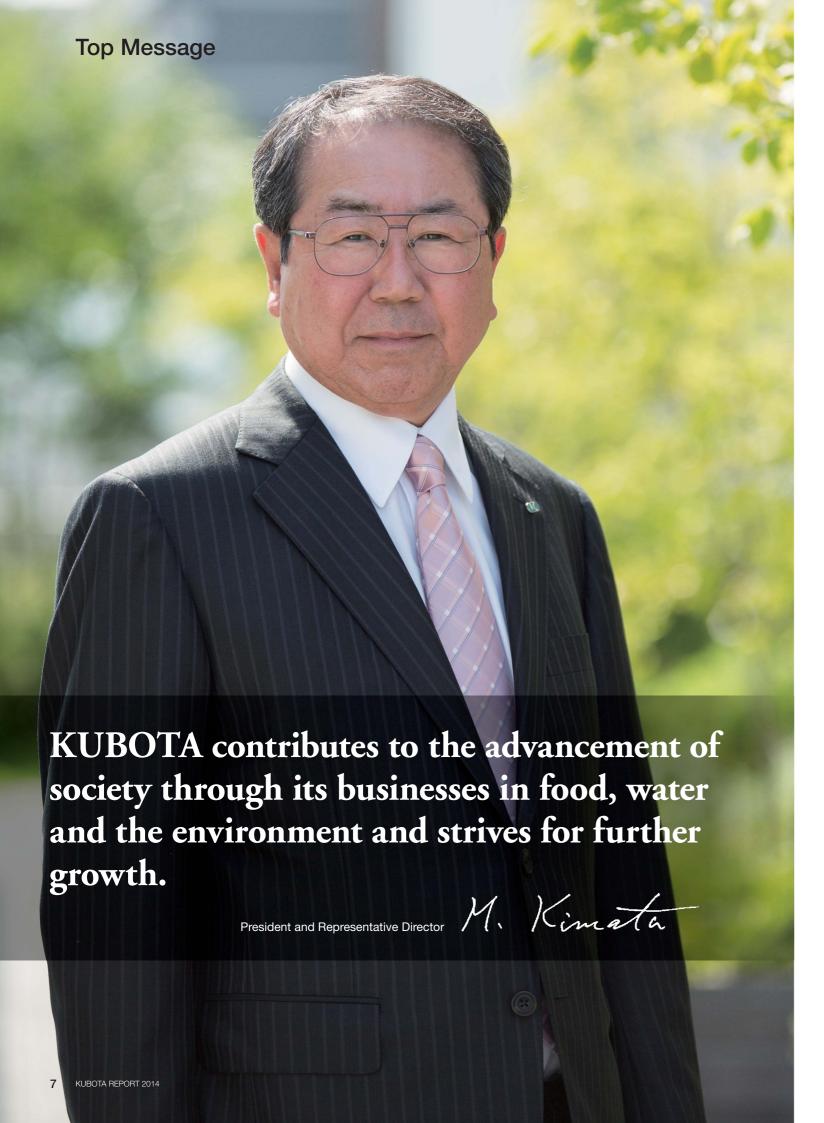
The Environmental Report contains the results of environmental activities carried out by KUBOTA Corporation as well as 162 consolidated subsidiaries (61 domestic and 101 overseas companies)

### ■ Period covered by this report

The content of this report focuses on activities during fiscal 2014 (April 2013 to March 2014, hereinafter FY2014). The Environmental Report presents domestic data from April 2013 to March 2014 and overseas data from January 2013 to December 2013. Some portions may include information on recent events.

■ Referenced guidelines
Environmental Reporting Guidelines (Fiscal Year 2012 version),
Ministry of the Environment (Government of Japan)
Sustainability Reporting Guidelines Version 3.1, GRI

### ■ Questionnaire concerning KUBOTA REPORT 2014


We would very much appreciate hearing your impressions and opinions and thank you in advance for your cooperation.



http://www.kubota-global.net/csr/report/questionnaire.html

Designed by CSR Promotion Dept. Edited and published by Corporate Communication Dept.

KUBOTA REPORT 2014 6



I'm Masatoshi Kimata and I have recently assumed the position of President and Representative Director of KUBOTA Corporation. I acted as President following the sudden demise of Mr. Yasuo Masumoto, KUBOTA Corporation's former Representative Director, Chairman, President and CEO, in June 2014. After the General Meeting of Shareholders, I was formally inaugurated in this position in July 2014.

Under his stewardship, Mr. Masumoto would often emphasize that KUBOTA Corporation's and its subsidiaries' (herein after, "KUBOTA") lifeblood was its ability to consistently evolve and change. Rather than settling for the status quo, it was imperative that we boldly take on new challenges and accelerate the globalization. I take to heart the ambitions of my predecessor, who spoke of KUBOTA's future and his dreams for its business and then unrelentingly raced straight ahead toward their realization. Accordingly, I will endeavor to strengthen our global presence in the food, water and environment fields.

### **Carrying Forward FY2015 Management Policies**

I will carry forward both the management policies and priority measures developed at the beginning of the period.

### **Priority measures**

# (1) Accelerate business development in strategic

KUBOTA is strategically accelerating a full-scale entry into the agricultural machinery market for upland farming as well as its development of Water & Environment business activities mainly in Asia outside Japan in a bid to realize medium- to long-term growth.

Thus far, KUBOTA has expanded its overseas business activities based on the success in the agricultural machinery for rice paddy cultivation in Japan. Looking ahead, energies will be directed toward making a full-scale entry into the agricultural machinery market for upland farming, where the area under cultivation is estimated to be more than four times larger than the rice cultivation market. KUBOTA will step up the development of its business in this field by quickly expanding its lineup of products, strengthening and expanding its sales and service network, and implementing other measures with the aim of building a strong position and ranking with existing European and U.S. manufacturers in the upland

In its Water & Environment business activities in China, KUBOTA is moving forward with the development of its operations through existing local engineering, pump and other business subsidiaries. In Southeast Asia, KUBOTA is entering into the new business fields. As a result of these

endeavors, we have received orders for palm oil mill effluent treatment systems in Malaysia and Indonesia. Moving forward, we will make full use of the local subsidiaries' bases acquired in 2012.

### (2) Strengthen global business operating systems

In order to expand our business activities in overseas markets, I strongly believe that we must pursue the globalization of mainstay business functions. To this end, we must take steps to aggressively promote the localization of our operations. On this basis, in order to develop products that meet local needs, expanding and upgrading our R&D systems are vital if we are to genuinely expand our business in global markets. Moving forward, we will further strengthen our R&D systems after clarifying the roles and functions of R&D centers among those in Japan and those located overseas. This will enable us to more widely and thoroughly implement the approach of focusing on meeting the needs of the market.

In addition, we will place equal weight on expanding business in Japan.

### (3) Realign the Water & Environment business

Compared with the Farm & Industrial Machinery business, the development of overseas operations in the Water & Environment business has lagged. We will therefore work to expand its business in the global markets and also realign the business from a long-term perspective. We will reexamine business units and products from the point of view of growth potential and profitability, and then we will aggressively allocate management resources to those units and products that should be strengthened. Meanwhile, KUBOTA as a whole will work in unison to improve the performance of businesses that continue to exhibit prolonged weakness.

### **The New Management Structure**

I will continue the management style of my predecessor, who placed considerable importance on top management's leadership and work diligently to achieve established goals. With myself at the helm, directors and top management will meet regularly to exchange opinions and deliberate on matters that are important to KUBOTA. In this manner, top management is committed to ensuring a robust decision-making process. Meanwhile, I will steadfastly carry forward KUBOTA's longstanding commitment to speedy and agile top-down management. Decisions will therefore be implemented in a timely and robust manner. Top management, myself included, will accordingly set an example worth following with a strong sense of speed.

### **Management that Emphasizes the Front Line**

During my career, I have worked in each of the manufacturing, sales and procurement departments. I believe that I have an adequate understanding of the difficulties faced by the front line and am sufficiently familiar with possible problems and issues that occur at the front line. Led by our former President, we have continued to engage in business management that places priority on work sites centered on manufacturing. While continuing to adopt this focus, I will also extend the importance of frontline activities to include every facet of our operations including R&D, manufacturing and marketing. Recognizing that these activities define the spirit of a manufacturer, I will work to solidify our operating platform in a bid to expand business activities. Utilizing this robust platform as a springboard for growth, KUBOTA will again accelerate the pace of our business activities across global markets.

### **Promoting Business Activities**

### (1) Marketing

To successfully expand our business activities going forward, it is essential that we pursuit for a global-scale marketing with a long-term view and the development of appropriate technologies and products underpinned by it. It goes without saying that a customer-first principle is fundamental to the conduct of marketing. I am convinced that our efforts to deliver products and services that exceed customers' needs with the speed that also exceeds customers' expectations will impress our customers. To achieve this end, we must continuously improve our marketing, development and manufacturing capabilities.

### (2) Technology development

KUBOTA will rebuild its R&D bases and systems in a bid to secure the technologies necessary to properly develop its business activities in strategic markets. In the past, business units have for the most part led our R&D endeavors. As previously stated, we will adopt a comprehensive and global approach to rebuilding of R&D systems and have begun steps to put in place a groupwide technology strategy for the future.

Meanwhile, it is becoming increasingly important both in Japan and overseas to develop technologies and products that are deeply rooted in each local community and accurately reflect the circumstances of each region. With this in mind, KUBOTA will work to localize its R&D activities particularly at major overseas bases.

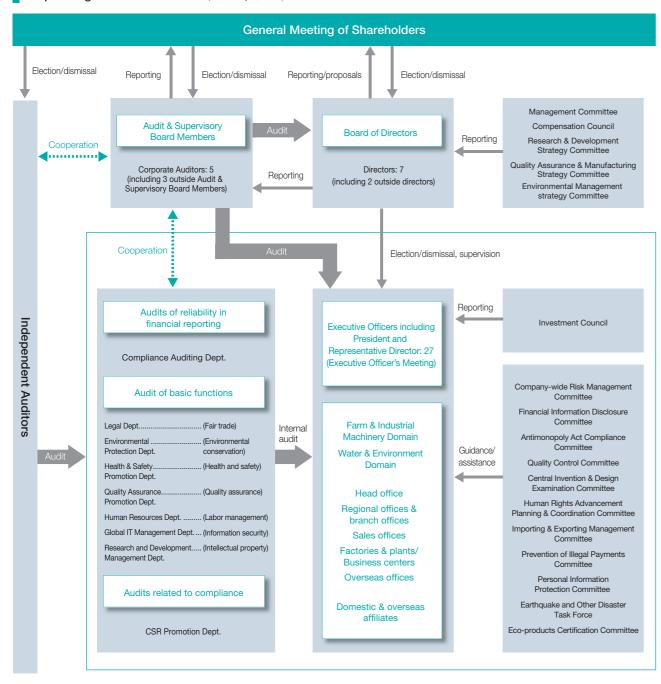
### (3) Strengthening manufacturing capabilities

KUBOTA will establish a proprietary manufacturing method that takes into consideration developments in global production as well as the unique features of KUBOTA products to further enhance the level of production. My role is to enable the implementation of this proprietary manufacturing method by putting in place a global production base network and a global human resources development platform that instills in our personnel a commitment to consistently higher quality. Moreover, I will ensure that each production base is able to deliver products that leave a lasting impression and build plants that generate excitement.

At the same time, we will place equal emphasis on globalizing the procurement function to ensure that "Made by KUBOTA" remains a trusted brand. In 2013, we established the Procurement Headquarters to unify the management of procurement across business boundaries and to strengthen collaboration between business units and bases. Additionally we take steps to secure the necessary human resources to engage in global procurement and continue to build a global-scale Group procurement network that extends well beyond each of our businesses and activities.

### **Toward Further Growth**

My predecessor, Mr. Masumoto, was a strong advocate for the globalization. In announcing KUBOTA's management policies each year, he would emphasize that the cultivation of new business and markets is vital for dramatic growth. To this end, he would place significant importance on substantial improvement of our capabilities in technology and manufacturing. I will make every effort for further enhancement and expansion of these fundamental policies. In specific terms, my goal is to see KUBOTA evolve into a company that consistently takes on new challenges and works diligently to contribute to society by resolving issues in the food, water and environment fields. From the perspective of our employees, I would like to see KUBOTA become a company in which employees can have a dream for the future. My goal is to ensure that a company provides a platform for employees to engage in personal growth in the conduct of their business activities. I will make every effort to unify KUBOTA and instill in its employees great confidence. As we work toward achieving these aspirations, we kindly request your continued support and understanding.


| Profile: Ma | satoshi Kimata, President                                                                                                                                                                                                                         |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Apr. 1977   | Joined KUBOTA Corporation                                                                                                                                                                                                                         |
| Oct. 2001   | General Manager of Tsukuba Plant                                                                                                                                                                                                                  |
| Jun. 2005   | Director of KUBOTA Corporation                                                                                                                                                                                                                    |
| Apr. 2007   | Deputy General Manager of Sales Headquarters in Farm & Industrial Machinery Consolidated Division                                                                                                                                                 |
| Apr. 2008   | Managing Director of KUBOTA Corporation                                                                                                                                                                                                           |
| Apr. 2009   | Director and Managing Executive Officer of Kubota Corporation<br>Deputy General Manager of Farm & Industrial Machinery<br>Consolidated Division, General Manager of Sales<br>Headquarters in Farm & Industrial Machinery<br>Consolidated Division |
| Jul. 2010   | Senior Managing Executive Officer of KUBOTA Corporation                                                                                                                                                                                           |
| Aug. 2010   | President of SIAM KUBOTA Corporation Co., Ltd.                                                                                                                                                                                                    |
| Apr. 2012   | In charge of Water & Environment Domain, General Manager of Tokyo Head Office                                                                                                                                                                     |
| Jun. 2012   | Director and Senior Managing Executive Officer of Kubota Corporation                                                                                                                                                                              |
| Aug. 2012   | Corporate Staff Operation, General Manager of Water<br>Engineering & Solution Division                                                                                                                                                            |
| Apr. 2013   | General Manager of Procurement Headquarters                                                                                                                                                                                                       |
| Apr. 2014   | Representative Director and Executive Vice President                                                                                                                                                                                              |
| Jul. 2014   | President and Representative Director (to present)                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                   |



# Corporate Governance

In order to speed up its response to management conditions and achieve enhanced transparency in management, etc., KUBOTA Corporation has adopted the following corporate governance structure.

Corporate governance structure (as of July 1, 2014)



### **Board of Directors**

The Board of Directors makes strategic decisions and oversees the execution of duties by Directors and Executive Officers. It is made up of seven Directors (two of whom are Outside Directors). In addition to its regular monthly board meetings, it also meets as and when required, to discuss and make decisions relating to management planning, financial planning, investment, business restructuring and other important management

### **Executive Officers' Meeting**

KUBOTA Corporation has adopted the executive officer system. The Executive Officers' Meeting consists of the President and Representative Director (referred to below as "the President") and the Executive Officers. In addition to its regular monthly meetings, it also meets as and when required. The President instructs the Executive Officers on policies and decisions made by the Board of Directors. The Executive Officers report to the President regarding the status of their execution of duties.

### **Audit & Supervisory Board Members**

KUBOTA Corporation is a company with Audit & Supervisory Board Members. The Audit & Supervisory Board Members consist of five Corporate Auditors (of whom three are outside Audit & Supervisory Board Members). In addition to regular meetings held on a quarterly or more frequent basis, the Audit & Supervisory Board Members also meet as and when required to discuss and make decisions with regard to auditing policy, audit reports and other matters.

### Management Committee and **Investment Council**

The Management Committee meets to deliberate important management matters such as investments and loans, and mid-term management plans before they are discussed by the Board of Directors. Two of the full-time corporate auditors participate in the committee as observers. The Investment Council gives the President advice on matters to be decided by the President, except those deliberated by the Management Committee, as well as on special matters. The council does not include the President, and one of the full-time corporate auditors participates in it as an observer.

### The KUBOTA Hotline (Internal reporting system)

As a mechanism to support its risk control activities, the KUBOTA Group operates an internal reporting system, which also places contracting lawyers outside the Company as consultants. This system aims to prevent or quickly detect and correct any illegal and unethical acts, as well as to develop an open corporate culture.

The number of times the KUBOTA Hot Line was used increased from 44 times in fiscal 2013 to 55 times in fiscal 2014 due to various activities conducted to raise awareness of the hotline.

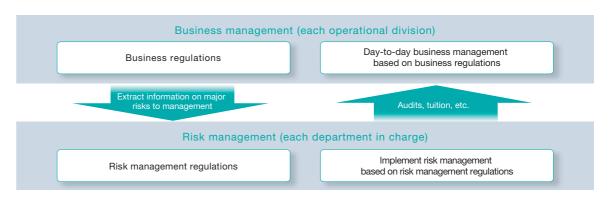
### Flowchart of the KUBOTA Hotline Reporting Reporting Confirmation/ Confirmation/ Instructions Cooperation Cooperation General Manager of eneral Manager of Huma Reply Reply Communication

KUBOTA REPORT 2014

# Internal Control System

The KUBOTA Group's internal control system is based on the recognition that risk management forms an essential part of business activities. In naturally ensuring compliance with relevant laws and regulations, the Company works to make operational-level enhancements, such as the standardization of established practices, by making steady, ongoing improvements in its business activities so that if there are any deficiencies, they are corrected immediately.

### Audit number and contents of the risk management


| Risk management item                                           |                                                                                                   | Risk to be avoided                                                                                                                                                                                                                                                                   | Number of audited items (total)*1 for FY2014 |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Internal control over financial reporting  Financial reporting |                                                                                                   | Risk on reliability in financial reporting                                                                                                                                                                                                                                           | 4,429                                        |
|                                                                | Fair trade                                                                                        | Collusive bidding and price cartels Unfair trading with sales companies, etc. Violation of the Subcontractors Law                                                                                                                                                                    | 120                                          |
|                                                                | Environmental conservation                                                                        | Violations of law Environmental accidents Past environmental debt                                                                                                                                                                                                                    | 12,106                                       |
|                                                                | Health and safety                                                                                 | Serious accidents     Occupational illnesses     Administrative punishments and lawsuits                                                                                                                                                                                             | 2,904                                        |
| Internal control concerning basic                              | Quality assurance                                                                                 | Quality problems that may damage the KUBOTA brand and other matters                                                                                                                                                                                                                  | 768                                          |
| corporate functions                                            | Labor management      A Related to improper management of emponent contract and temporary workers | Related to breach of obligation on attention to safety of employees Related to improper management of working conditions Related to improper management of employees under irregular employment, and contract and temporary workers Related to occurrence of overseas labor problems | 5,996                                        |
|                                                                | Information security                                                                              | Computer virus infection Information leaks Information system failure                                                                                                                                                                                                                | 1,700                                        |
|                                                                | Intellectual property                                                                             | Infringing intellectual property of other companies                                                                                                                                                                                                                                  | 539                                          |
|                                                                | Compliance with equipment-related statutes                                                        | Violations of law related to owned assets and facilities such as the Building Standard<br>Law, Fire Defense Law and Industrial Safety and Health Act                                                                                                                                 | 498                                          |
|                                                                | Earthquake and other disaster control                                                             | Serious loss of management, such as human crises, damage to facilities and IT systems, caused by earthquake, etc.                                                                                                                                                                    | 72                                           |
|                                                                | Compliance with the<br>Construction<br>Business Law                                               | Violation of the Construction Business Law                                                                                                                                                                                                                                           | 798                                          |
|                                                                | Human rights<br>promotion* <sup>2</sup>                                                           | Cases of abusing human rights     Litigation due to improper handling of a case                                                                                                                                                                                                      | _                                            |
| Internal control concerning                                    | Safe operation control                                                                            | Violation of traffic rules, and accidents caused by such violation     Further damage due to improper handling at time of accident                                                                                                                                                   | 120                                          |
| compliance                                                     | Prevention of illegal payments                                                                    | Relations with antisocial forces     Violation of the Political Fund Control Act     Inappropriate payments to foreign officials, etc.                                                                                                                                               | 430                                          |
|                                                                | Confidential<br>information<br>management                                                         | Leakage of confidential information such as development and marketing plans for<br>new products                                                                                                                                                                                      | 515                                          |
|                                                                | Personal information protection                                                                   | Leakage and loss of personal information on customers, employees, etc.     Improper use of personal information                                                                                                                                                                      | 257                                          |
|                                                                | Import and export control                                                                         | Violation of import and export-related laws including the Customs Act, Foreign<br>Exchange and Foreign Trade Control Law, Basel Law and chemical-related laws                                                                                                                        | 200                                          |
|                                                                | Compliance with logistics-related laws                                                            | Violation of the logistics-related laws including the Road Traffic Act     Violation of the drivers' hours rules including the Labor Standards Act                                                                                                                                   | 361                                          |

<sup>\*1</sup> No. of audited items (total) is the sum of the number of items audited in each of the divisions subject to audit in FY2013.

# Operation of the Internal Control System

Amid the increasing speed of global business development, we are very much aware that risk management activities based on internal control mechanisms are a management foundation for business survival and work to make improvements, including at our overseas affiliates.

\* Details of activities with regard to other risks are posted in part on the Social Report pages.



### Fair trade

KUBOTA holds training sessions related to the Antimonopoly Act on an ongoing basis, including at its overseas affiliates, and works to prevent any reduction in awareness of the Company's past violations. In addition, with regard to dubious acts, KUBOTA conducts a consultation with a lawyer or the Fair Trade Commission and is adamant about preventing any recurrence of illegal behavior.

With regard to the Subcontract Law, KUBOTA proactively holds basic training workshops and practical consultations in addition to expanding and upgrading its risk management system.

Kubota Agri Service Co., Ltd. has received a site inspection of the Fair Trade Commission as there is a suspicion that in November 2013, was going to bid rigging for country elevators agriculture facility.

In addition to fully cooperate, we will continue to ensure the efforts for antitrust compliance, including the Group companies continue to investigate.

### Information management

(information security, confidential information management, protection of personal information)

Preventing information leaks and the infection of computers by viruses by the ongoing installation of standard anti-virus software in overseas operations and updating Windows XP PCs, the Company enhances security by means of audits. In addition, we are working to finish unifying the different e-mail systems used within the Company as part of our information security measures.

KUBOTA established guidelines in 2012 regarding the safe and effective use of social media for business and personal purposes. With the aim of managing the Company's confidential information and protecting personal information, we are taking the opportunities of audits and workshops to educate everyone in the Company and ensure adherence to the rules.

Please visit our website for information on our policy regarding the protection of personal information



### Prevention of illegal payments

KUBOTA conducts audits to confirm that mechanisms to prevent illegal payments are in place and working. The Company also confirms that there in fact have not been any illegal payments through the Prevention of Illegal Payments Committee.

The Company is especially reinforcing activities to prevent bribery.

- KUBOTA unveiled the KUBOTA Group's Policy on Anti-Bribery, and the top management made an announcement stating that they would absolutely not permit bribery.
- KUBOTA formulated the KUBOTA Group Anti-Bribery Guidelines and is putting mechanisms in place and formulating detailed rules to prevent bribery.
- KUBOTA created the KUBOTA Group Handbook for Anti-Bribery and is raising awareness of laws and rules related to preventing bribery as well as appropriate responses to bribery. We have created Japanese, English, and Chinese editions of the handbook and have also taken action to prevent the payment of bribes to foreign public officials, which has especially been a problem in recent years.
- To effectively promote bribery prevention activities, workshops are first held with departments most exposed to bribery risk.



<sup>\*2</sup> In FY2014, activities for human rights promotion focused mainly on training, releasing information, and tracking survey results.

# Revenues set a new record for the second year in a row.

For the year ended March 31, 2014, revenues of KUBOTA Corporation and its subsidiaries (hereinafter, the "Company") increased ¥298.0 billion [24.6%], to ¥1,508.6 billion, from the prior year.

In the domestic market, revenues increased ¥95.3 billion [17.6%], to ¥638.3 billion, from the prior year. Domestic revenues in Farm & Industrial Machinery increased substantially due to higher sales of farm equipment, construction machinery, and engines. Revenues in Water & Environment also increased steadily owing to sales growth of products related to public works spending.

In overseas markets, revenues increased ¥202.7 billion [30.4%], to ¥870.2 billion, from the prior year. Overseas revenues in Farm & Industrial Machinery rose in North America, Asia outside Japan, and Europe. Revenues in Water & Environment and Other expanded mainly in Asia

outside Japan. The ratio of overseas revenues to consolidated revenues was 57.7%, 2.6 percentage points higher than in the prior year.

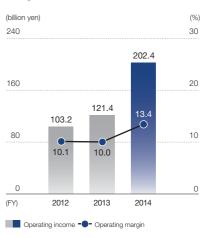
Operating income increased ¥81.1 billion [66.8%] from the prior year, to ¥202.4 billion, due to increased domestic and overseas revenues and the effect of yen depreciation.

Income before income taxes and equity in net income of affiliated companies, equivalent to operating income plus other income of ¥8.9 billion, amounted to ¥211.3 billion, which was ¥84.1 billion [66.1%] higher than in the prior year. Income taxes were ¥71.9 billion, and equity in net income of affiliated companies was ¥3.0 billion. Furthermore, after deduction of net income attributable to noncontrolling interests of ¥10.8 billion, net income attributable to KUBOTA Corporation was ¥131.7 billion, ¥53.6 billion [68.7%] higher than in the prior year.

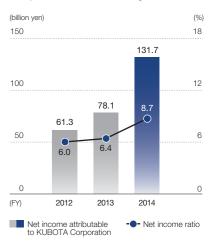
# **Financial Highlights**

| 3 9 3                                     | (billion ye |          |          |  |  |
|-------------------------------------------|-------------|----------|----------|--|--|
| (FY)                                      | 2012        | 2013     | 2014     |  |  |
| Year ended March 31:                      |             |          |          |  |  |
| Revenue                                   | ¥1,021.6    | ¥1,210.6 | ¥1,508.6 |  |  |
| Operating income                          | 103.2       | 121.4    | 202.4    |  |  |
| Income before income taxes                | 99.8        | 127.2    | 211.3    |  |  |
| Net income attributable to KUBOTA Corp.   | 61.3        | 78.1     | 131.7    |  |  |
| Capital investments                       | 34.1        | 50.5     | 51.2     |  |  |
| Depreciation                              | 24.0        | 29.9     | 35.3     |  |  |
| R&D expenses                              | 27.9        | 32.0     | 35.6     |  |  |
| Net cash provided by operating activities | 68.0        | 49.3     | 83.3     |  |  |
| Free cash flow*1                          | 38.3        | 0.1      | 30.2     |  |  |
| As of March 31:                           |             |          |          |  |  |
| Total assets                              | ¥1,550.7    | ¥1,846.6 | ¥2,104.7 |  |  |
| Shareholders' equity                      | 674.4       | 793.3    | 934.8    |  |  |
| Interest-bearing debt                     | 388.0       | 510.0    | 586.9    |  |  |
| Per share data (Yen) :                    |             |          |          |  |  |
| Earnings per share (EPS)*2                | ¥ 48.54     | ¥ 62.15  | ¥104.94  |  |  |
| Book-value per share (BPS)*3              | 536.97      | 631.64   | 748.00   |  |  |
| Principal financial data (%):             |             |          |          |  |  |
| Operating margin                          | 10.1        | 10.0     | 13.4     |  |  |
| Return on assets (ROA)*4                  | 6.8         | 7.5      | 10.7     |  |  |
| Return on equity (ROE)*5                  | 9.3         | 10.6     | 15.2     |  |  |
| Shareholders' equity to total assets      | 43.5        | 42.9     | 44.4     |  |  |
| Debt equity ratio (times)*6               | 0.58        | 0.64     | 0.63     |  |  |

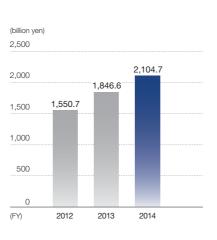



<sup>\*2.</sup> Earnings per share (EPS) = Net income attributable to KUBOTA Corp. ÷ Weighted average number of common shares outstanding

The Company aligned the reporting periods of certain subsidiaries and affiliated companies with different financial statement closing dates to that of KUBOTA Corporation. To reflect the impact of these changes, the Company retrospectively adjusted the consolidated financial statements for all periods presented.


### Revenues and overseas revenue ratio

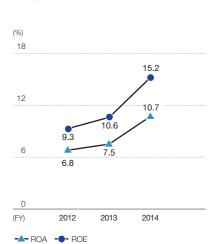



# Operating income and operating margin

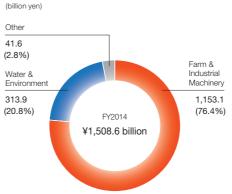


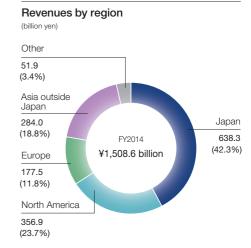
# Net income attributable to KUBOTA Corporation and net margin




### Total assets




# Shareholders' equity and shareholders' equity to total assets




### ROA, ROE



### Revenues by reporting segment





<sup>\*3.</sup>Book-value per share (BPS) = Shareholders' equity ÷ Number of common shares outstanding as of each balance sheet date

<sup>\*4.</sup>Return on assets (ROA) = Income before income taxes ÷ Total assets (average of beginning and end of fiscal year)

<sup>\*5.</sup>Return on equity (ROE) = Net income attributable to KUBOTA Corp. ÷ Shareholders' equity (average of beginning and end of fiscal year)

<sup>\*6.</sup>Debt equity ratio = Interest-bearing debt ÷ Shareholders' equity

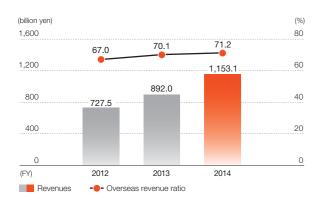
# Farm & Industrial Machinery



### Review of operations

Revenues in this segment increased 29.3% from the prior year, to ¥1,153.1 billion, and accounted for 76.4% of consolidated revenues.

Domestic revenues increased 24.9%, to ¥332.6 billion. Sales of farm equipment marked a record increase due to front-loaded demand before the consumption tax hike and execution of the agricultural-related supplemental budget. Sales of construction machinery expanded sharply due to the increase in public works spending and other factors. Sales of engines also rose.


Overseas revenues increased 31.1%, to ¥820.5 billion. In North America, as economic recovery trends continued, sales of tractors increased favorably due to the effects of

launching a new line of products and other factors. Sales of construction machinery expanded along with the recovery of housing starts, while sales of engines showed only a slight increase. Revenues in Europe rose significantly because of increased sales of tractors and construction machinery and steady sales of engines owing to the bottoming out of the economy. Revenues in Asia outside Japan increased sharply owing to higher sales of farm equipment and recovery in sales of construction machinery in China.

Operating income in this segment increased 69.2%, to ¥196.9 billion due to increased revenues in Japan and overseas and the effects of yen depreciation.

Segment profit and segment profit margin





# (billion yen) (%) 240 45 160 30 116.4 17.1 15 0 0 0 0

### **Topics**

### Establishing a production center for an upland farming tractor in France and starting mass production in April 2015

KUBOTA has announced plans to establish a company in France to manufacture new upload farming tractors of 130 to 170 horsepower with mass production slated to commence in April 2015. We aim to produce 3,000 tractors per year from 2017. Compared with rice cultivation, a core market for KUBOTA, the area of arable land for upland crops, such as wheat, corn and soybeans, is roughly four times larger, and large-scale farmland has been expanding in mainly Europe and North America. KUBOTA decided to build a new plant because France is a central area of demand in Europe and Dunkerque is in close proximity to a port for convenient exports to North America and elsewhere. First, KUBOTA aims to expand the large-scale dryfield agricultural equipment business in Europe and North America alongside Kverneland ASA, a Norwegian tractor implement manufacturer the Company acquired in May 2013. Through this initiative, we aim to become an all-round agricultural machinery manufacturer with a strong global presence in both the rice cultivation market and the upland crop market.



### Increasing production capacity of the diesel engine plant in the Republic of Indonesia

KUBOTA doubled the production capacity for compact diesel engines under 14 horsepower at its plant in Indonesia from 60,000 to 120,000 units annually and commenced production in July 2014. Compact diesel engines are used in walk-behind power tillers and irrigation pumps, for example, and are positioned as a product for the initial stages of agricultural mechanization. With strong grass-roots demand in Southeast Asia, KUBOTA decided to invest in expanding production capacity to meet growing demand in tandem with a move to an industrial district at the request of Semarang City. KUBOTA aims to enhance its brand image as an agricultural machinery manufacturer while contributing to advances in agricultural mechanization by increasing sales of these engines in Southeast Asia.



Artist's rendition of the plant

### Establishing new companies for strengthening agricultural machinery sales in Cambodia and Laos

SIAM KUBOTA Corporation Co., Ltd. (SKC), a joint-venture company formed with the Siam Cement Group, a company affiliated with Thailand's royal family, established wholly owned subsidiaries in Cambodia and Laos in January 2014. Both Cambodia and Laos are agricultural countries that produce mostly rice. In recent years, the increase in wages in Thailand has led to an upswing in the number of people moving to work in Thailand from Cambodia and Laos. This has in turn resulted in labor shortages in the agricultural areas of the two countries and a rapid expansion in demand for agricultural machinery. To date, KUBOTA has sold tractors, combine harvesters, compact diesel engines and power tillers to dealers in Cambodia and Laos through SKC. With the establishment of new companies in both countries, which are expected to enjoy growing demand for machinery, efforts are being directed toward further expanding the Group's network of dealers thereby expanding the agricultural machinery business.

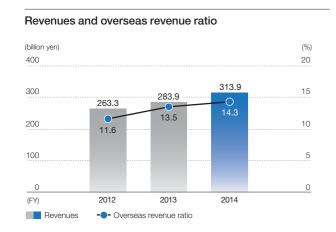


### Launch of agricultural machinery compatible with newly developed agricultural support system with ICT for farmers in Japan

In Japan, farmers are working to enlarge agricultural operations, bolster cost competitiveness, and create high-value-added agricultural products while striving to efficiently produce the safe, worry-free, and delicious agricultural products demanded by consumers. KUBOTA has developed the KUBOTA Smart Agri System (KSAS) as a new system that uses information communications technology (ICT) to assist with farming and related services. We began offering this service in June 2014. At the same time, we introduced agricultural machinery compatible with KSAS and will help farmers improve agricultural operations and management using data accumulated from this machinery. KUBOTA launched for the first time tractors able to transmit data about land cultivation work records and machinery operating performance, combine harvesters able to measure harvest yields for each farm and flavor variations, and rice transplanters able to electronically adjust the amount of fertilizer applied. Data gathered by KSAS can be used to formulate agricultural work plans to find optimal harvest yields and rice crop flavors.



# Water & Environment




# Review of operations

Water & Environment is comprised of pipe-related products (ductile iron pipes, plastic pipes, pumps, valves, and other products), environment-related products (environmental control plants and other products), and social infrastructurerelated products (industrial castings, spiral-welded steel pipes, vending machines, precision equipment, airconditioning equipment, and other products).

Revenues in this segment increased 10.6% to ¥313.9 billion from the prior year, and accounted for 20.8% of consolidated revenues.

Domestic revenues increased 9.5% to ¥268.9 billion.



Revenues in pipe-related products rose mainly due to higher sales of plastic pipes. In addition, revenues in environment-related products and social infrastructurerelated products also increased. Overseas revenues expanded 17.6%, to ¥45.0 billion owing to increased sales of pumps and industrial castings.

Operating income in this segment increased 6.5%, to ¥24.9 billion, as the increase in revenues offset an increase in material costs.

# Segment profit and segment profit margin Segment profit - Segment profit margin

### **Topics**

### Received an order for Water supply system and Water Purification Plant (WPP) and Sewerage Treatment Plant (STP) in Myanmar's special economic zone

KUBOTA received an order for a water supply system as well as water purification and sewerage treatment plants to be installed and constructed within the Thilawa Special Economic Zone (SEZ). The Thilawa SEZ occupies a wide area of approximately 2,400 hectares and is expected to attract not only Japanese companies but also companies from all over the world. For the first stage of development in the roughly 400-hectare Phase 1 Development Area, KUBOTA used ductile iron pipes for water intake and supply systems as well as its own proprietary treatment methods, which deliver low running costs, for water purification and sewage treatment. In addition to water- and environment-related products, KUBTOA plans to provide the Thilawa SEZ with a wide range of water, effluent and exhaust gas treatment equipment provided by KUBOTA KASUI Corporation. In this manner, the Group is looking to contribute to the economic development of Myanmar.



### Constructing palm oil mill effluent treatment facilities in Indonesia—KUBOTA contributes to environmental improvement and the use of renewable energy development by the anaerobic membrane

KUBOTA received an order for five plants to recover biogas from palm oil mill effluent (POME) in Sumatra in the Republic of Indonesia. This is the first order received in Indonesia and the second order received in the region, following an order in Sarawak, Malaysia in October 2012. Palm oil is a major export for Indonesia and Malaysia. The POME that is discharged as a result of the production of palm oil is polluting both water and air. This in turn has become a major problem with the heightened awareness of global warming. By providing and promoting the Company's anaerobic membrane bioreactor (MBR) system, which has dramatically increased biogas yield (20% or higher than other systems), KUBOTA hopes to make a contribution to environmental conservation and the promotion of renewable energy use at palm oil mills in Indonesia and Malaysia, which produce 85% of the palm oil consumed globally.



Plant in Malaysia

### Received order for MBR system to be used in the City of Canton, Ohio, USA, the largest MBR facility in the North America

KUBOTA Membrane U.S.A. Corporation received an order for a water recycling treatment facility in Canton City, Ohio, USA in collaboration with its US partner. The facility will be the largest wastewater treatment facility to use MBR technology in North America with a capacity to serve a population of 150,000 people. The Company began technical development of MBRs and launched the Kubota submerged membrane unit (SMU) in 1991. The Company first set up a local subsidiary in London, UK in 2001. In the ensuing period, subsidiaries have been established in Washington, USA and Shanghai, China. KUBOTA SMUs are attracting worldwide acclaim. Having considerable previous success in small and medium-sized facilities with a capacity to serve a population of 25,000 people. the Company developed a product for large treatment facilities. This particular project order is a measure of the Company's success and the result of vigorous sales and marketing activities. The Company will accelerate the business development for large treatment facilities in Europe and the Middle Fast



# Other

### Review of operations

Other is comprised of construction, services, and other businesses.

Revenues in this segment increased 20.1% to ¥41.6 billion from the prior year, and accounted for 2.8% of consolidated revenues. Revenue generated from construction and other business also rose.

Operating income in this segment increased 57.7% to ¥3.8 billion.

### Launch of imported Japanese rice milling and marketing operations in Singapore

As its second Japanese rice export receiving base after Kubota Rice Industry (H.K.) Co., Ltd., which was established in 2011, KUBOTA established the subsidiary Kubota Rice Industry (Singapore) Co., Ltd. to import, mill, and sell Japanese rice in Singapore. Operations began in January 2014 after the construction of a rice milling plant in Singapore. We aim to expand Japanese rice import and polishing businesses overseas as a way to help troubled Japanese rice producers export their crops.



Selling rice produced in Kumamoto

KUBOTA REPORT 2014 20

# Consolidated Balance Sheets

| Assets | (In millions of yen) |
|--------|----------------------|

|                                               |                                                               | March 3   | 31, 2014 | March 3   | 31, 2013 | Change   |
|-----------------------------------------------|---------------------------------------------------------------|-----------|----------|-----------|----------|----------|
|                                               |                                                               | Amount    | %        | Amount    | %        | Amount   |
| Current assets                                | Cash and cash equivalents                                     | 87,022    |          | 99,789    |          | (12,767) |
|                                               | Notes and accounts receivable:                                |           |          |           |          |          |
|                                               | Trade notes                                                   | 69,974    |          | 73,895    |          | (3,921)  |
|                                               | Trade accounts                                                | 534,921   |          | 436,642   |          | 98,279   |
|                                               | Less: Allowance for doubtful notes and accounts receivable    | (3,186)   |          | (2,712)   |          | (474)    |
|                                               | Total notes and accounts receivable, net                      | 601,709   |          | 507,825   |          | 93,884   |
|                                               | Short-term finance receivables-net                            | 162,983   |          | 141,157   |          | 21,826   |
|                                               | Inventories                                                   | 299,765   |          | 263,217   |          | 36,548   |
|                                               | Other current assets                                          | 82,482    |          | 68,476    |          | 14,006   |
|                                               | Total current assets                                          | 1,233,961 | 58.6     | 1,080,464 | 58.5     | 153,497  |
| Investments and long-term finance receivables | Investments in and loan receivables from affiliated companies | 22,631    |          | 19,535    |          | 3,096    |
|                                               | Other investments                                             | 137,641   |          | 126,715   |          | 10,926   |
|                                               | Long-term finance receivables-net                             | 334,112   |          | 275,815   |          | 58,297   |
|                                               | Total investments and long-term finance receivables           | 494,384   | 23.5     | 422,065   | 22.9     | 72,319   |
| Property, plant and                           | Land                                                          | 93,308    |          | 91,367    |          | 1,941    |
| equipment                                     | Buildings                                                     | 255,657   |          | 243,327   |          | 12,330   |
|                                               | Machinery and equipment                                       | 424,478   |          | 397,213   |          | 27,265   |
|                                               | Construction in progress                                      | 11,300    |          | 12,844    |          | (1,544)  |
|                                               | Total                                                         | 784,743   |          | 744,751   |          | 39,992   |
|                                               | Accumulated depreciation                                      | (502,042) |          | (480,968) |          | (21,074) |
|                                               | Net property, plant and equipment                             | 282,701   | 13.4     | 263,783   | 14.3     | 18,918   |
| Other assets                                  | Goodwill and intangible assets-net                            | 34,628    |          | 30,475    |          | 4,153    |
|                                               | Long-term trade accounts receivable                           | 35,737    |          | 32,010    |          | 3,727    |
|                                               | Other                                                         | 23,824    |          | 18,461    |          | 5,363    |
|                                               | Less: Allowance for doubtful receivables                      | (578)     |          | (656)     |          | 78       |
|                                               | Total other assets                                            | 93,611    | 4.5      | 80,290    | 4.3      | 13,321   |
| Total                                         |                                                               | 2,104,657 | 100.0    | 1,846,602 | 100.0    | 258,055  |

Liabilities and equity (In millions of yen)

|                       |                                          | March 31, 2014 |       | March 3   | 31, 2013 | Change   |  |
|-----------------------|------------------------------------------|----------------|-------|-----------|----------|----------|--|
|                       |                                          | Amount         | %     | Amount    | %        | Amount   |  |
| Current liabilities   | Short-term borrowings                    | 181,573        |       | 140,324   |          | 41,249   |  |
|                       | Trade notes payable                      | 40,561         |       | 19,655    |          | 20,906   |  |
|                       | Trade accounts payable                   | 200,145        |       | 228,178   |          | (28,033) |  |
|                       | Advances received from customers         | 7,873          |       | 10,122    |          | (2,249)  |  |
|                       | Notes and accounts payable for capital   | 15.000         |       | 15.074    |          | (000)    |  |
|                       | expenditures                             | 15,262         |       | 15,871    |          | (609)    |  |
|                       | Accrued payroll costs                    | 36,829         |       | 32,846    |          | 3,983    |  |
|                       | Accrued expenses                         | 48,939         |       | 39,725    |          | 9,214    |  |
|                       | Income taxes payable                     | 36,349         |       | 18,097    |          | 18,252   |  |
|                       | Other current liabilities                | 61,626         |       | 51,580    |          | 10,046   |  |
|                       | Current portion of long-term debt        | 89,766         |       | 78,589    |          | 11,177   |  |
|                       | Total current liabilities                | 718,923        | 34.2  | 634,987   | 34.4     | 83,936   |  |
| Long-term liabilities | Long-term debt                           | 315,598        |       | 291,085   |          | 24,513   |  |
|                       | Accrued retirement and pension costs     | 13,026         |       | 29,050    |          | (16,024) |  |
|                       | Other long-term liabilities              | 56,497         |       | 39,515    |          | 16,982   |  |
|                       | Total long-term liabilities              | 385,121        | 18.3  | 359,650   | 19.5     | 25,471   |  |
| Equity                | KUBOTA Corporation shareholders' equity: |                |       |           |          |          |  |
|                       | Common stock                             | 84,070         |       | 84,070    |          | _        |  |
|                       | Capital surplus                          | 88,753         |       | 88,919    |          | (166)    |  |
|                       | Legal reserve                            | 19,539         |       | 19,539    |          | _        |  |
|                       | Retained earnings                        | 703,740        |       | 605,962   |          | 97,778   |  |
|                       | Accumulated other comprehensive          |                |       |           |          |          |  |
|                       | income (loss)                            | 38,996         |       | (4,976)   |          | 43,972   |  |
|                       | Treasury stock, at cost                  | (287)          |       | (203)     |          | (84)     |  |
|                       | Total KUBOTA Corporation shareholders'   | 004.044        |       | 700.011   | 40.0     |          |  |
|                       | equity                                   | 934,811        | 44.4  | 793,311   | 42.9     | 141,500  |  |
|                       | Noncontrolling interests                 | 65,802         | 3.1   | 58,654    | 3.2      | 7,148    |  |
| T                     | Total equity                             | 1,000,613      | 47.5  | 851,965   | 46.1     | 148,648  |  |
| Total                 |                                          | 2,104,657      | 100.0 | 1,846,602 | 100.0    | 258,055  |  |

# Consolidated Statements of Income

(In millions of yen)

|                                                                             | Year ended March 31, 2014 Year ended March 31, 2013 |       | Change    |       |          |      |
|-----------------------------------------------------------------------------|-----------------------------------------------------|-------|-----------|-------|----------|------|
|                                                                             | Amount                                              | %     | Amount    | %     | Amount   | %    |
| Revenues                                                                    | 1,508,590                                           | 100.0 | 1,210,566 | 100.0 | 298,024  | 24.6 |
| Cost of revenues                                                            | 1,057,003                                           | 70.1  | 880,891   | 72.8  | 176,112  | 20.0 |
| Selling, general and administrative expenses                                | 247,865                                             | 16.4  | 208,605   | 17.2  | 39,260   | 18.8 |
| Other operating expenses (income)-net                                       | 1,291                                               | 0.1   | (289)     | (0.0) | 1,580    | _    |
| Operating income                                                            | 202,431                                             | 13.4  | 121,359   | 10.0  | 81,072   | 66.8 |
| Other income (expenses):                                                    |                                                     |       |           |       |          |      |
| Interest and dividend income                                                | 4,446                                               |       | 3,799     |       | 647      |      |
| Interest expense                                                            | (1,500)                                             |       | (1,330)   |       | (170)    |      |
| Gain on sales of securities-net                                             | 4,700                                               |       | 154       |       | 4,546    |      |
| Valuation loss on other investments                                         | (6)                                                 |       | (360)     |       | 354      |      |
| Foreign exchange gain (loss)-net                                            | (4,150)                                             |       | 8,753     |       | (12,903) |      |
| Other, net                                                                  | 5,372                                               |       | (5,197)   |       | 10,569   |      |
| Other income (expenses), net                                                | 8,862                                               |       | 5,819     |       | 3,043    |      |
| Income before income taxes and equity in net income of affiliated companies | 211,293                                             | 14.0  | 127,178   | 10.5  | 84,115   | 66.1 |
| Income taxes:                                                               |                                                     |       |           |       |          |      |
| Current                                                                     | 74,024                                              |       | 41,376    |       | 32,648   |      |
| Deferred                                                                    | (2,108)                                             |       | 284       |       | (2,392)  |      |
| Total income taxes                                                          | 71,916                                              |       | 41,660    |       | 30,256   |      |
| Equity in net income of affiliated companies                                | 3,034                                               |       | 1,606     |       | 1,428    |      |
| Net income                                                                  | 142,411                                             | 9.4   | 87,124    | 7.2   | 55,287   | 63.5 |
| Less: Net income attributable to the noncontrolling interests               | 10,750                                              |       | 9,070     |       | 1,680    |      |
| Net income attributable to KUBOTA Corporation                               | 131,661                                             | 8.7   | 78,054    | 6.4   | 53,607   | 68.7 |

# Consolidated Statements of Comprehensive Income

| •                         |                           | (In millions of yen) |
|---------------------------|---------------------------|----------------------|
| Year ended March 31, 2014 | Year ended March 31, 2013 | Change               |
| 142,411                   | 87,124                    | 55,287               |
|                           |                           |                      |
| 32,522                    | 48,766                    | (16,244)             |
| 10,065                    | 16,205                    | (6,140)              |
|                           |                           |                      |

| Net income                                                                 | 142,411 | 87,124  | 55,287   |
|----------------------------------------------------------------------------|---------|---------|----------|
| Other comprehensive income (loss), net of tax:                             |         |         |          |
| Foreign currency translation adjustments                                   | 32,522  | 48,766  | (16,244) |
| Unrealized gains on securities                                             | 10,065  | 16,205  | (6,140)  |
| Unrealized gains on derivatives                                            | 55      | 135     | (80)     |
| Pension liability adjustments                                              | 3,285   | 5,848   | (2,563)  |
| Total other comprehensive income                                           | 45,927  | 70,954  | (25,027) |
| Comprehensive income                                                       | 188,338 | 158,078 | 30,260   |
| Less: Comprehensive income attributable to the<br>noncontrolling interests | 12,643  | 17,071  | (4,428)  |
| Comprehensive income attributable to Kubota Corporation                    | 175,695 | 141,007 | 34,688   |

# Consolidated Statements of Changes in Equity

(In millions of yen)

|                                                                                                                                       |                                                         | Shareholders' Equity |                 |               |                   |                                      |                |                          |           |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------|-----------------|---------------|-------------------|--------------------------------------|----------------|--------------------------|-----------|
|                                                                                                                                       | Shares of<br>common stock<br>outstanding<br>(thousands) | Common stock         | Capital surplus | Legal reserve | Retained earnings | Accumulated other comprehensive loss | Treasury stock | Noncontrolling interests | Total     |
| Balance, at March 31, 2012                                                                                                            | 1,255,941                                               | 84,070               | 88,869          | 19,539        | 567,161           | (65,894)                             | (19,345)       | 57,963                   | 732,363   |
| Net income                                                                                                                            |                                                         |                      |                 |               | 78,054            |                                      |                | 9,070                    | 87,124    |
| Other comprehensive income                                                                                                            |                                                         |                      |                 |               |                   | 62,953                               |                | 8,001                    | 70,954    |
| Cash dividends paid to Kubota Corporation<br>shareholders, ¥16 per common share<br>Cash dividends paid to noncontrolling<br>interests |                                                         |                      |                 |               | (20,102)          |                                      |                | (420)                    | (20,102)  |
| Purchases and sales of treasury stock                                                                                                 | 10                                                      |                      |                 |               |                   |                                      | (10)           |                          | (10)      |
| Retirement of treasury stock                                                                                                          |                                                         |                      | (1)             |               | (19,151)          |                                      | 19,152         |                          | _         |
| Increase in noncontrolling interests related to contribution                                                                          |                                                         |                      |                 |               |                   |                                      |                | 175                      | 175       |
| Changes in ownership interests in<br>subsidiaries                                                                                     |                                                         |                      | 51              |               |                   | (2,035)                              |                | (16,135)                 | (18,119   |
| Balance, at March 31, 2013                                                                                                            | 1,255,951                                               | 84,070               | 88,919          | 19,539        | 605,962           | (4,976)                              | (203)          | 58,654                   | 851,965   |
| Net income                                                                                                                            |                                                         |                      |                 |               | 131,661           |                                      |                | 10,750                   | 142,411   |
| Other comprehensive income                                                                                                            |                                                         |                      |                 |               |                   | 44,034                               |                | 1,893                    | 45,927    |
| Cash dividends paid to Kubota Corporation shareholders, ¥19 per common share                                                          |                                                         |                      |                 |               | (23,870)          |                                      |                |                          | (23,870)  |
| Cash dividends paid to noncontrolling interests                                                                                       |                                                         |                      |                 |               |                   |                                      |                | (970)                    | (970)     |
| Purchases and sales of treasury stock                                                                                                 | (6,205)                                                 |                      |                 |               |                   |                                      | (10,097)       |                          | (10,097)  |
| Retirement of treasury stock                                                                                                          |                                                         |                      |                 |               | (10,013)          |                                      | 10,013         |                          | -         |
| Increase in noncontrolling interests related to contribution                                                                          |                                                         |                      |                 |               |                   |                                      |                | 207                      | 207       |
| Changes in ownership interests in<br>subsidiaries                                                                                     |                                                         |                      | (166)           |               |                   | (62)                                 |                | (4,732)                  | (4,960)   |
| Balance, at March 31, 2014                                                                                                            | 1,249,746                                               | 84,070               | 88,753          | 19,539        | 703,740           | 38,996                               | (287)          | 65,802                   | 1,000,613 |

# Consolidated Statements of Cash Flows

| /1 - |          |       | - \ |
|------|----------|-------|-----|
| (In  | millions | or ve | :n) |

|                                                                                  | Year ended March 31, 2014 | Year ended March 31, 2013 | Change   |
|----------------------------------------------------------------------------------|---------------------------|---------------------------|----------|
| Operating activities:                                                            |                           |                           |          |
| Net income                                                                       | 142,411                   | 87,124                    |          |
| Depreciation and amortization                                                    | 35,344                    | 29,942                    |          |
| Gain on sales of securities-net                                                  | (4,700)                   | (154)                     |          |
| Valuation loss on other investments                                              | 6                         | 360                       |          |
| Loss from disposal of fixed assets-net                                           | 737                       | 851                       |          |
| Impairment loss on long-lived assets                                             | 885                       | 296                       |          |
| Equity in net income of affiliated companies                                     | (3,034)                   | (1,606)                   |          |
| Deferred income taxes                                                            | (2,108)                   | 284                       |          |
| Increase in notes and accounts receivable                                        | (82,602)                  | (61,445)                  |          |
| Increase in inventories                                                          | (16,932)                  | (19,651)                  |          |
| Increase in other current assets                                                 | (178)                     | (2,853)                   |          |
| Increase (decrease) in trade notes and accounts payable                          | (13,013)                  | 15,824                    |          |
| Increase (decrease) in income taxes payable                                      | 17,570                    | (2,267)                   |          |
| Increase in other current liabilities                                            | 13,075                    | 8,347                     |          |
| Decrease in accrued retirement and pension costs                                 | (10,302)                  | (4,533)                   |          |
| Other                                                                            | 6,163                     | (1,196)                   |          |
| Net cash provided by operating activities                                        | 83,322                    | 49,323                    | 33,999   |
| Investing activities:                                                            |                           |                           |          |
| Purchases of fixed assets                                                        | (53,157)                  | (49,175)                  |          |
| Purchase of investment securities                                                | (2,125)                   | (234)                     |          |
| Proceeds from sales of property, plant and equipment                             | 1,050                     | 1,228                     |          |
| Proceeds from sales and redemption of investments                                | 11,563                    | 412                       |          |
| Acquisition of business, net of cash acquired                                    | _                         | 642                       |          |
| Increase in finance receivables                                                  | (258,945)                 | (200,614)                 |          |
| Collection of finance receivables                                                | 198,923                   | 167,992                   |          |
| Net (increase) decrease in short-term loan receivables from affiliated companies | (360)                     | 1,680                     |          |
| Net (increase) decrease in time deposit                                          | (1,075)                   | 31                        |          |
| Other                                                                            | (83)                      | (1,023)                   |          |
| Net cash used in investing activities                                            | (104,209)                 | (79,061)                  | (25,148) |
| Financing activities:                                                            |                           |                           |          |
| Proceeds from issuance of long-term debt                                         | 140,068                   | 148,685                   |          |
| Repayments of long-term debt                                                     | (121,334)                 | (114,218)                 |          |
| Net increase in short-term borrowings                                            | 24,170                    | 32,830                    |          |
| Payments of cash dividends                                                       | (23,870)                  | (20,102)                  |          |
| Purchases of treasury stock                                                      | (10,097)                  | (10)                      |          |
| Purchases of noncontrolling interests                                            | (4,753)                   | (18,048)                  |          |
| Other                                                                            | (970)                     | (243)                     |          |
| Net cash provided by financing activities                                        | 3,214                     | 28,894                    | (25,680) |
| Effect of exchange rate changes on cash and cash equivalents                     | 4,906                     | 7,243                     | (2,337)  |
| Net increase (decrease) in cash and cash equivalents                             | (12,767)                  | 6,399                     |          |
| Cash and cash equivalents, beginning of year                                     | 99,789                    | 93,390                    |          |
| Cash and cash equivalents, end of year                                           | 87,022                    | 99,789                    | (12,767) |

### Notes

|                                |        |        | (In millions of yen) |
|--------------------------------|--------|--------|----------------------|
| Cash paid during the year for: |        |        |                      |
| Interest                       | 11,493 | 8,483  | 3,010                |
| Income taxes net of refunds    | 56,510 | 43,517 | 12,993               |

# Consolidated Segment Information

### Reporting segments

| Year ended March 31, 2014             |                                |                     |        |             |              |  |
|---------------------------------------|--------------------------------|---------------------|--------|-------------|--------------|--|
|                                       | Farm & Industrial<br>Machinery | Water & Environment | Other  | Adjustments | Consolidated |  |
| Revenues:                             |                                |                     |        |             |              |  |
| External customers                    | 1,153,088                      | 313,931             | 41,571 | _           | 1,508,590    |  |
| Intersegment                          | 76                             | 6,147               | 23,676 | (29,899)    | _            |  |
| Total                                 | 1,153,164                      | 320,078             | 65,247 | (29,899)    | 1,508,590    |  |
| Operating income                      | 196,891                        | 24,878              | 3,791  | (23,129)    | 202,431      |  |
| Identifiable assets at March 31, 2014 | 1,584,062                      | 269,272             | 92,703 | 158,620     | 2,104,657    |  |
| Depreciation and amortization         | 25,272                         | 6,995               | 749    | 2,328       | 35,344       |  |
| Capital expenditures                  | 36,541                         | 10,038              | 748    | 3,902       | 51,229       |  |

Year ended March 31, 2013

(In millions of yen)

|                                       | Farm & Industrial<br>Machinery | Water & Environment | Other  | Adjustments | Consolidated |
|---------------------------------------|--------------------------------|---------------------|--------|-------------|--------------|
| Revenues:                             |                                |                     |        |             |              |
| External customers                    | 892,018                        | 283,921             | 34,627 | _           | 1,210,566    |
| Intersegment                          | 59                             | 5,497               | 22,075 | (27,631)    | _            |
| Total                                 | 892,077                        | 289,418             | 56,702 | (27,631)    | 1,210,566    |
| Operating income                      | 116,387                        | 23,352              | 2,404  | (20,784)    | 121,359      |
| Identifiable assets at March 31, 2013 | 1,344,365                      | 260,258             | 83,582 | 158,397     | 1,846,602    |
| Depreciation and amortization         | 20,811                         | 6,213               | 741    | 2,177       | 29,942       |
| Capital expenditures                  | 38,587                         | 8,024               | 742    | 3,102       | 50,455       |

### Revenues from external customers by product groups

|                                            |                              | (In millions of yen)         |
|--------------------------------------------|------------------------------|------------------------------|
|                                            | Year ended<br>March 31, 2014 | Year ended<br>March 31, 2013 |
| Farm Equipment and<br>Engines              | 1,002,913                    | 781,911                      |
| Construction Machinery                     | 150,175                      | 110,107                      |
| Farm & Industrial Machinery                | 1,153,088                    | 892,018                      |
| Pipe-related Products                      | 167,741                      | 151,032                      |
| Environment-related<br>Products            | 73,180                       | 64,917                       |
| Social Infrastructure-<br>related Products | 73,010                       | 67,972                       |
| Water & Environment                        | 313,931                      | 283,921                      |
| Other                                      | 41,571                       | 34,627                       |
| Total                                      | 1,508,590                    | 1,210,566                    |
|                                            | •                            | •                            |

### Geographic information

Information for revenues from external customers by destination

|                    |                              | (In millions of yen)         |
|--------------------|------------------------------|------------------------------|
|                    | Year ended<br>March 31, 2014 | Year ended<br>March 31, 2013 |
| Japan              | 638,346                      | 543,027                      |
| North America      | 356,890                      | 278,976                      |
| Europe             | 177,466                      | 118,305                      |
| Asia outside Japan | 283,971                      | 226,367                      |
| Other Areas        | 51,917                       | 43,891                       |
| Total              | 1,508,590                    | 1,210,566                    |

Information for property, plant and equipment based on physical location

|                    |                | (In millions of yen) |
|--------------------|----------------|----------------------|
|                    | March 31, 2014 | March 31, 2013       |
| Japan              | 180,735        | 178,672              |
| North America      | 29,859         | 25,566               |
| Europe             | 19,661         | 14,274               |
| Asia outside Japan | 47,941         | 41,101               |
| Other Areas        | 4,505          | 4,170                |
| Total              | 282,701        | 263,783              |



# Summary of Social Activities - Together with Society

The KUBOTA Group aims to increase the satisfaction of various stakeholders and enhance its corporate value through implementing the PDCA cycle in each category.

Summary of the Fiscal 2014 Social Report, Priority Issues for Fiscal 2015 and Medium-Term Targets

KUBOTA's response to the asbestos issue

KUBOTA recognizes sincerely that asbestos-related diseases have occurred among local residents and employees in the vicinity of the former Kanzaki Plant. From the standpoint of fulfilling its social responsibility as a company that handled asbestos in the past, KUBOTA needs to continue tackling this problem with sincerity in the future.

- As of March 31, 2014 relief payments had been made to 265 individuals pursuant to the internal policy of the "Relief Payment System for the Asbestos-Related Patients and the Family Members of the Deceased near the Former Kanzaki Plant."

   KUBOTA employees, including those already retired, suffering from asbestos-related diseases comprised a total of 190 persons as of March 31, 2014, of whom 172 are deceased and 18 are undergoing treatment.
- 3 KUBOTA has provided financial support for clinical and basic research projects conducted by Hyogo College of Medicine.

(Japanese only)

For further information, see: http://www.kubota.co.jp/kanren/index.html

○ Target reached △ Portion of target not reached

| Main focus of                                                                     | Plan                                                                                                                                                                                                                                                                 | Do                                                                                                                                                                                                                                                                                                                                                                                                                            | Check           | Action                                                                                                                                                                                                                                                                                                                                 |                      | Plan                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| activity                                                                          | Priority issues for FY2014<br>(From April 2013 to March 2014)                                                                                                                                                                                                        | Activities in FY2014<br>(From April 2013 to March 2014)                                                                                                                                                                                                                                                                                                                                                                       | Self-evaluation | Priority issues for FY2015<br>(From April 2014 to March 2015)                                                                                                                                                                                                                                                                          | Page                 | Medium-term Targets                                                                                                                                                                                                          |
| Technologies,<br>Skills and<br>Services to<br>Improve<br>Customer<br>Satisfaction | <ul> <li>Aim to increase customer satisfaction by improving<br/>activities and products as well as sharing survey results<br/>and data on customer service issues among relevant<br/>departments</li> </ul>                                                          | <ul> <li>Collaborated with relevant departments in replying to<br/>customer inquiries (Shared problems with relevant<br/>departments to improve customer satisfaction)</li> </ul>                                                                                                                                                                                                                                             |                 | Strengthen market-in approach     Disseminate information reflected in product development and marketing                                                                                                                                                                                                                               | 27<br>28             | Improve work by reflecting customer opinions     Enhance responsiveness to customer needs, includifor inspection and maintenance                                                                                             |
| Quality and Procurement to                                                        | Improving quality via quality audits     Prevent quality problems by strengthening quality engineering and check functions at development stage     Inspecting the content of education and continuing to provide education                                          | <ul> <li>Periodically conducted quality audits inside and outside<br/>Japan</li> <li>Implemented quality engineering and Design Review<br/>Based on Failure Modes (DRBFM) Company-wide</li> <li>Reviewed education curriculum</li> </ul>                                                                                                                                                                                      |                 | Reduce quality risks and improve risk management structure through quality audits Improve quality by introducing and using scientific methods Educate personnel through training and reviews of curriculum                                                                                                                             | 29                   | Instilling quality assurance systems     Strengthening activities to prevent quality problems     Further improvements in quality control and product safety education                                                       |
| Improve<br>Customer<br>Satisfaction                                               | Manage customer data (updates)     Address conflict mineral problem                                                                                                                                                                                                  | <ul> <li>Managed supplier data (collated and updated)</li> <li>Created policy to address conflict minerals, seek<br/>understanding of suppliers, and request cooperation in<br/>surveys conducted by the KUBOTA Group</li> </ul>                                                                                                                                                                                              |                 | Bolster competitiveness by helping suppliers enhance<br>manufacturing, increase skills of procurement<br>managers     Continue to seek understanding of suppliers regarding<br>conflict minerals and request their cooperation in<br>surveys conducted by the KUBOTA Group                                                             | 30                   | Promotion of CSR procurement by sharing guideline<br>with suppliers of KUBOTA Group companies                                                                                                                                |
| Timely and Appropriate Release of Information                                     | To receive further understanding of business from shareholders and investors as well as to build a trust relationship with them by enhancing disclosure of corporate information Further improve the General Meeting of Shareholders (make its easier to understand) | <ul> <li>Disclosed accurate corporate information and proactively responded to press inquiries.</li> <li>Improved information disclosure for foreign investors by issuing quarterly financial report in English</li> <li>Conveyed results of business activities in an easy to understand format at the General Meeting of Shareholders (via displays of core products, videos projected onto large screens, etc.)</li> </ul> |                 | Making continuous efforts to receive further understanding of business from shareholders and investors as well as to build a trust relationship with them by disclosing timely and fair corporate information.  Further improvements in General Meetings of Shareholders (Holding easy-to-understand General Meetings of Shareholders) | _                    | To promote of IR activities aimed at achieving an appropriate share price which reflects real state of the Company  Earning trust of stakeholders and expanding the ran of stable shareholders by means of appropriate relea |
| 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                           | Enhance communications by improving websites for<br>each country     Build collaborative structure with major overseas bases                                                                                                                                         | In line with overseas business expansion, created new<br>websites for eight countries and distributed information<br>about business activities in each country                                                                                                                                                                                                                                                                | 0               | Enhance communications by creating and expanding websites for each country in tune with local needs     Strengthen corporate branding by unifying design of KUBOTA Group websites                                                                                                                                                      | _                    | Corporate branding, including overseas                                                                                                                                                                                       |
| Creating a Safe<br>Workplace for All<br>Employees                                 | Nurture safety-conscious people (strengthen personnel training) Eliminate causes of risk that lead to serious injury or illness (steady implementation of PDCA) Maintain and improve a healthy work environment                                                      | Created KUBOTA's Basic Policies on Safety and Health     Provided KYT training to increase safety awareness     Implemented measures to address facility risk from major disasters                                                                                                                                                                                                                                            |                 | <ul> <li>Deploy Basic Guidelines for Human Safety</li> <li>Transition from KYT (training) to KY activities (actions)</li> <li>Identify sources of risks that lead to serious injuries and implement countermeasures</li> </ul>                                                                                                         | 31                   | Promoting a safety-first culture among all employees<br>the KUBOTA Group while aiming for zero accidents<br>require time off from work                                                                                       |
| Creating a<br>Physically and<br>Mentally Healthy<br>Work Environment              | Share information with labor-management committees     Promote specific measures across the KUBOTA Group based on the KUBOTA Wellness Action Plan     Launch second phase of Health KUBOTA 21                                                                        | Sharing information among labor-management committees     Promoting specific measures based on the "KUBOTA Wellness (Mental Health) Action Plan" across the KUBOTA Group     Conducted walking events for second phase of Health KUBOTA 21                                                                                                                                                                                    | 0               | Continue to share information with labor-management committees Promoting specific measures based on the "KUBOTA Wellness (Mental Health) Action Plan" across the KUBOTA Group Continue to promote second phase of Health KUBOTA 21                                                                                                     | 32                   | Aiming to create a vibrant work environment that<br>enables everyone in the KUBOTA Group to live healt<br>and happily                                                                                                        |
| Respecting<br>Human Rights                                                        | Prevention of harassment as well as maintenance and improvement of the capacity to resolve harassment in Japan     Ascertain human rights conditions at overseas bases and consider measures related to human rights                                                 | <ul> <li>Enhanced training in Japan to prevent and resolve<br/>harassment, including at sales companies</li> <li>Confirmed measures related to human rights and<br/>ascertained human rights conditions at all overseas<br/>bases</li> </ul>                                                                                                                                                                                  |                 | Prevention of harassment as well as maintenance and improvement of the capacity to resolve harassment in Japan     Grasp human rights conditions at overseas bases and consider human rights measures in accordance with international standards for human rights                                                                      | 00                   | Attempting to disseminate educational activities in<br>human rights on the part of the KUBOTA Group at<br>home and abroad                                                                                                    |
| and Promoting<br>Diversity                                                        | Proactively participate in outside forums and provide opportunities internally for exchange of opinions     Promote activities that support women in managerial positions alongside increases in female managers                                                     | <ul> <li>Held K-Wing meeting. Proactively participated in planning and operating of women forums (WNF) outside the company</li> <li>Provided education for employees taking childcare leave</li> <li>Held foreigner forums with five other companies</li> </ul>                                                                                                                                                               |                 | Assist women in career advancement while enhancing<br>support for women in managerial positions                                                                                                                                                                                                                                        | 33                   | Continuing efforts to promote diversity management<br>(Examining measures to develop a corporate culture<br>that brings out the potential of employees and<br>motivates them regardless of gender, nationality, age<br>etc.) |
| Personnel<br>Policies in Tune<br>with Globalization                               | Continue to implement and enhance measures for<br>securing, training and deploying human resources<br>needed to build a global management system and<br>globalize operations                                                                                         | Created the Global Personnel Management Policy for the global management of personnel Held global human resources meetings to share personnel systems and discuss personnel policies in tune with globalization Expanded the foreign language education system (language training for new employees, overseas trainee system)                                                                                                 |                 | Aim to advance personnel measures needed to build a<br>management structure in tune with business<br>globalization                                                                                                                                                                                                                     | 34                   | Aim to assign the right person to the right job global<br>and maximize use of human resources                                                                                                                                |
|                                                                                   | business (créate common values)  Continue to support earthquake reconstruction efforts  Explore ideas for contributing to society overseas                                                                                                                           | Continued to implement the KUBOTA e-Project (collaboration with young people and support for reviving abandoned farmland) Continued to offer assistance for reconstruction after the Great East Japan Earthquake (temporary housing support, such as community gardens, hands-on training for agricultural high schools, volunteers) Implemented initiatives at overseas bases that were                                      | 0               | Aim to share our social contribution policies Groupwide, and advance measures to grow with communities Continue to help with reconstruction while being responsive to needs Strengthen ties with overseas bases and enhance activities together                                                                                        | 37<br>38<br>39<br>40 | Expand initiatives overseas     Promote collaboration with NGOs and NPOs                                                                                                                                                     |

\*For items on internal control, see the Management section on pages 11 to 14, and for environmental items, see the Environmental Report section on pages 41 to 71.

<sup>\*</sup>The above table does not especially contain fundamental, long-term information regarding HR or other policies.

# Initiatives to Improve Customer Satisfaction

The KUBOTA Group aims to satisfy customers and gain their trust by providing compelling products and services tailored to their needs. The KUBOTA Group engages in R&D and strives to polish technical skills in order to ensure product features and quality are worthy of the Made by KUBOTA brand.

# R&D and Technical Skill Training for Customer Satisfaction

### R&D Creates New Value through the Fusion of Mechatronics and IT

IT-based services are spreading to various areas of society. As an aim of development, KUBOTA offers administrative and management services that combine mechatronics and IT. Beginning with these developments, KUBOTA aims to provide valuable new products and

services that bring more satisfaction to its customers through groundbreaking R&D that will unearth issues and needs that even customers do not realize.

### R&D Creates New Value through the Fusion of Mechatronics and IT

In Japan, new needs have been emerging in agriculture with the transition to larger, more efficient farms turning agriculture into a

growth industry against a backdrop of aging farmers and changes in government agricultural policies. KUBOTA has increased agricultural efficiency by accurately tracking

fields that are challenging to navigate due to uneven ground and quagmires, enabling the

even application of fertilizer without waste. During harvesting with combines, location data is paired with data about crop quality and volume. This data is then stored in a system for use during the next planting season for optimizing the application of fertilizer.

with GPS the speed and location of tractors in

While public works budgets are revised, concerns have arisen about the need to repair aging social infrastructure that have a

direct impact on communities. KUBOTA conducts R&D into the efficient updating of water pipeline networks, such as new technologies that enable the automatic creation of pipe layout maps using GPS and the automatic connection of piping using machines.

### **Regional Marketing and Product Development**

With the globalization of business, customers are rapidly going global. It is not possible to completely satisfy customer needs for how to increase product sales or how to locally launch high-quality products developed and manufactured in Japan. KUBOTA has put in place local R&D centers in order to accurately grasp customer needs and rapidly develop new products. For example, North America is the main market for riding lawn mowers, so we shifted our development base to the United States. Products developed mainly by local researchers became popular hits for aligning with customer needs. We will promote the development of products that customers truly like by conforming to the cultures, customs and climate of each country and region around the world.



"Zero Turn Mower" ridable lawn mower

### **Sharing Technical Information**

KUBOTA has technologies that span a variety of fields as a result of constantly addressing the expectations of society throughout time. To contribute globally and leverage our comprehensive capabilities in the fields of food, water and the environment, which are essential for the continuation of the human race, we must cross business boundaries and take development to the next level. At its technology research presentations, KUBOTA assembles engineers from across the Group, including overseas companies, to facilitate interaction and information sharing.



KUBOTA Technology Research Presentation Product Development Manager

### Disclosure of Recall Information

### Recall of medium-duty tractors

(total of 218 tractors in six models) Recall number: 3332 Recall start date: March 27, 2014

For further information, see: (Japanese only)



http://www.kubota.co.jp/important/index.html

### **KUBOTA Group Technical Skill Contests**

The KUBOTA Group holds the KUBOTA Group Technical Skill Contest with the aim of fostering a sense of unity and improving technical skills across the Group. At the event in fiscal 2014, 201 contestants tested their technical skills in 14 categories, including lathing, welding, and machine maintenance. In addition to competing against each other, the contest served as an opportunity to evaluate the skill levels of each base and encourage the contestants to sharpen their skills even further. The contests improve the manufacturing capabilities of each base while spreading these skills across the entire Group.



KUBOTA Group Technical Skill Contest

Recall of KL-Z tractors

Recall number: 3392

Recall start date: July 24, 2014

(total of 7,447 tractors in nine models)

### Improving New Employee (Trainee) Education

Under the policy of "no manufacturing without human resource development," KUBOTA is committed to the education of new employees who will engage in manufacturing at production sites. The current trainee system, which was launched in 1975, provides a residential training course for approximately one year at the two training centers in Sakai and Hirakata in Osaka Prefecture. The training curriculum is mainly composed of "technical and skill training," "practical training at production line" and "personality development training." Throughout the training period, the trainees learn the basics as members of society and as new employees. This system is highly appreciated by visitors of the training centers including high school teachers.



Trainee system session (finishing practice)

### Establishment of the "5-Gen Dojo" Overseas

Amid the rapid globalization of manufacturing bases, KUBOTA established the first overseas "5-Gen Dojo" in the United States for the purpose of spreading throughout the world the "5-Gen" principle,\* a philosophy of constant improvement in employee training and at manufacturing sites. As a place to learn about the "5-Gen" principle, the new facility plans to accept students from Canada and Europe in addition to the United States. With the global localization of production, KUBOTA will make sure that each base around the world conforms to KUBOTA manufacturing standards to ensure safety, environment, quality, cost and delivery (SEQCD) worthy of the Made by KUBOTA brand.

\* "5-Gen" principle = [Gen-ba (Actual Site), Gen-butsu (Actual Things), Gen-iitsu (Actual Facts), Gen-ri (Principles) and Gen-soku (Basic Rules)] for ongoing



"5-Gen Dojo" Opening Ceremony Kubota Manufacturing of America Corporation Chief Manufacturing Officer

**Eyvind Time** KUBOTA REPORT 2014 KUBOTA REPORT 2014 28

# Quality and Services to Improve Customer Satisfaction

### Initiatives to Improve Quality and Small Group Activities

Amid global business development, KUBOTA introduces and utilizes scientific methods such as Design Review Based on Failure Mode (DRBFM)\*1 and quality engineering\*2 to win customer satisfaction and ensure product quality (functions, performance and reliability) under various operating conditions. We aim to ensure product safety and superior quality by further advancing these scientific methods.

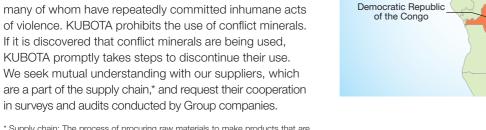
KUBOTA promotes small group activities that lead to improvements in personnel training and workplace vitality. Every year, a small group activity award presentation event is held with representative circles, and the winning circle describes its results at presentations held inside and outside Japan. In 2013, KUBOTA won the Excellence Award at the International Convention on QC Circles held in Taipei, Taiwan. We will continue to invigorate small group activities and train personnel to equip them with the technical skills and technologies that will earn the trust of customers.

- \* 1 A method of preventing potential problems from arising by focusing on chang-
- es in designs and development.
  \* 2 A method of efficiently defining design requirements through experimentation to ensure uniform quality under different operating conditions



Excellence Award received at International Convention on QC Circles

### **Bolstering Global Procurement Capabilities**


Procurement at overseas production bases has risen sharply in accordance with the rapid globalization of business. The KUBOTA Group strives for optimal regional procurement by building a supplier network around the world. We aim to strengthen competitiveness by improving quality and productivity through measures to organize major suppliers. Through these activities, we aim to enhance the skill sets of procurement managers at KUBOTA bases. We will continue to make the KUBOTA brand worthy of the trust placed in us by customers around the world.



A veteran giving guidance to a supplier in Thailand

### Initiatives to Address Conflict Mineral Problem (CSR Procurement)

KUBOTA addresses the problem of conflict minerals as a part of its CSR activities. Conflict minerals are a problem facing global society. Of the tantalum, tin, tungsten and gold produced in the Democratic Republic of the Congo and neighboring countries, These conflict minerals are those that act as a source of funds for armed insurgents, many of whom have repeatedly committed inhumane acts of violence. KUBOTA prohibits the use of conflict minerals. If it is discovered that conflict minerals are being used, KUBOTA promptly takes steps to discontinue their use. We seek mutual understanding with our suppliers, which are a part of the supply chain,\* and request their cooperation



<sup>\*</sup> Supply chain: The process of procuring raw materials to make products that are delivered to consumers.

# Status of ISO9001 Certification (As of April 1, 2014)

### **Department Office**

|                           | Department Office                                    |                              |                                                                                                                                                                             | Main product(s)                                                         | Date of<br>certification | Certifying body |
|---------------------------|------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------|-----------------|
| Farm & Engines, Tractors, |                                                      | ors. Farm                    | Sakai (Including<br>Okajima) Rinkai                                                                                                                                         | Engines, tractors, farm equipment, and construction machinery           | 1994.06                  | LRQA            |
| industrial                | machinery, Co                                        |                              | Tsukuba                                                                                                                                                                     | Engines and tractors                                                    | 1994.06                  | LRQA            |
| machinery                 | machinery                                            |                              | Utsunomiya                                                                                                                                                                  | Transplanters and harvesting equipment                                  | 1997.02                  | LRQA            |
|                           |                                                      |                              | Hirakata                                                                                                                                                                    | Construction machinery                                                  | 1996.04                  | LRQA            |
|                           | Ductile i                                            |                              | Hanshin<br>Keiyo                                                                                                                                                            | Ductile iron pipe, fittings, accessories and related products           | 1999.01                  | JCQA            |
|                           | Pipe system Valves Industrial                        | Valves                       | Hirakata                                                                                                                                                                    | Valves and gates                                                        | 1994.09                  | LRQA            |
|                           |                                                      | Industrial materials         | Okajima                                                                                                                                                                     | Casting products                                                        | 1998.05                  | JICQA           |
|                           | Pumps                                                | Hirakata                     | Pumps, pump station, and sewage & water purification plants                                                                                                                 | 1997.10                                                                 | LRQA                     |                 |
|                           | Water                                                | Water and sewage engineering | Tokyo                                                                                                                                                                       | Sewage & sludge treatment, water purification and waste water treatment | 1997.10                  | LRQA            |
| Water & environment       | engineering & solution                               | Membrane<br>systems          | Hanshin Office                                                                                                                                                              | Membrane module and anaerobic MBR technology                            | 1997.10                  | LRQA            |
| environment               |                                                      | Johkasou                     | Shiga                                                                                                                                                                       | Purified water tank made by plastic                                     | 2003.04                  | JUSE            |
| Materials                 | Materials<br>(Steel castings,<br>Roll, New material) | Hirakata<br>Amagasaki        | Rollers, tubes, piping, fittings, spools, columns, piles, sleeves, cylinders, and static castings, rolling mill roll and non-metal mineral product (titanic acid compounds) | 1993.03                                                                 | LRQA                     |                 |
| Steel                     |                                                      | Steel pipe                   | Keiyo                                                                                                                                                                       | Spiral welded steel pipe                                                | 1998.07                  | JICQA           |
| Electronic                | Vending machinery                                    | Ryugasaki                    | Vending machines for cigarette, paper packed and canned beverage                                                                                                            | 2008.09                                                                 | DNV                      |                 |
|                           | equipped<br>machinery                                | Precision equipment          | Kyuhoji                                                                                                                                                                     | Electronic weighing equipment and load cell                             | 1994.08                  | DNV             |

### Key to the abbreviation of certifying bodies

: Lloyd's Register Quality Assurance Ltd. Japan Chemical Quality Assurance Ltd. JIC Quality Assurance Ltd.

Union of Japanese Scientists and Engineers : DNV Business Assurance Japan K.K

### Affiliates in Japan

| Affiliated companies                   | Scope of certification                                                                                                                                                                                                                                                             | Date of<br>certification | Certifying body |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|
| KUBOTA Precision Machinery Co., Ltd.   | Design, development and manufacture of hydraulic valves, hydraulic cylinders for agricultural and construction machines. Manufacture of hydrostatic transmissions, hydraulic pumps for off road vehicles and agricultural machines, and hydraulic motor for construction machines. | 2007.04                  | LRQA            |
| KUBOTA-C.I. Co., Ltd.                  | Design, development, and manufacture, of vinyl pipes, polyethylene pipes, fittings and various kinds of attachments                                                                                                                                                                | 1998.04                  | JUSE            |
| Nihon Plastic Industry Co., Ltd.       | Design, development, and manufacture of vinyl pipe and secondary processed products     Design, development, and manufacture of polyethylene and other plastic pipes     Design, development, and manufacture of polystyrene/polyethylene and other plastic sheet plates           | 1998.12                  | JSA             |
| KUBOTA Pipe Tech Co.                   | Design, construction and construction management of various pipelines, etc.     Investigation and diagnosis of pipelines     Training on installation of fittings and pipe laying     Rental of pipe-laying equipment                                                              | 2002.03                  | JCQA            |
| Water Technology Institute Ltd.        | Design and development of packaged software supporting for water supply business.     Provision of operation support services for packaged software supporting for water supply business and its date entry services.                                                              | 2004.04                  | JCQA            |
| KUBOTA Environmental Service Co., Ltd. | Design, construction, maintenance, and servicing of plants for water supply systems, sewerage systems, debris landfill, night-soil treatment, and solid waste disposal                                                                                                             | 2000.02                  | MSA             |
| KUBOTA KASUI Corporation               | Design and construction of environmental conservation plants                                                                                                                                                                                                                       | 2000.01                  | BCJ-SAR         |
| KUBOTA Air Conditioner Co., Ltd.       | Design, development, manufacturing, and ancillary services for large-scale air-conditioning equipment                                                                                                                                                                              | 2000.02                  | JQA             |
| KUBOTA Systems, Inc.                   | Consigned development of software products and software packages, design, development, and manufacturing of network structures and ancillary services.  Operation service of information systems and operation and maintenance of networks  Sale of purchased products             | 1997.05                  | BSI-J           |
| Heiwa Kanzai Co., Ltd.                 | Design, development, and supply of cleaning services for buildings and facilities                                                                                                                                                                                                  | 2002.07                  | JICQA           |
| Kubota Construction Co.,Ltd.           | Design and construction of civil engineering structure and buildings                                                                                                                                                                                                               | 2011.12                  | JQA             |

### Key to the abbreviation of certifying bodies

: Lloyd's Register Quality Assurance Ltd. : Union of Japanese Scientists and Engineers : Japanese Standards Association

JCQA Japan Chemical Quality Assurance Ltd. BSJ-SAR: The Building Center of Japan : Japan Quality Assurance Organization

: BSI Group Japan K.K. : JIC Quality Assurance Ltd.

# Creating a Rewarding and Vibrant Work Environment

KUBOTA takes a variety of measures to make workplaces where employees can work safely, securely and in a healthy way. We focus these efforts on maintaining work-life balance, mental healthcare and occupational health and safety.

### Creating a Safe Workplace for All Employees

### **Occupational Safety Initiatives**

KUBOTA's Basic Policies on Safety and Health were formulated in April 2013 to ensure all employees involved in business activities understand that "Safety is our First Priority". The KUBOTA Group makes sure all of its employees have safe and secure workplaces.

The 9th KUBOTA Group Long-term Industrial Accident Reduction Plan aims to eliminate accidents that result in lost work time as one of its goals. To realize this goal, KUBOTA continued in fiscal 2015 to invest in safety measures and equipment based on Equipment Safety Improvement Guidelines it created in fiscal 2014. We have also incorporated Basic Guidelines for Human Safety into our personnel training program.

### KUBOTA's Basic Policies on Safety and Health

"In the KUBOTA Group, there is no work to be carried out without serious consideration for safety and health." To achieve this, we established the fundamental principle that all the people involved in the business shall behave based on the philosophy the 'Safety is our First Priority.'

### **Priority Actions**

### Offices and Plants

- Reinforcement of human resources resources of KUBOTA targeted safety)
- 2. Elimination and reduction of factors that lead to the risk of serious injury
- 3. Maintenance and improvement of healthy workplace environment
- Addressing to radiation risk
- 5. Promotion of mental health care
- Promotion of maintenance and improvement of health measures 7. Promotion of measures for industrial

### **Construction Departments**

- 1. Improve safety awareness and
- 2. Expand coordinated health and
- 3. Promote accident prevention measures
- 4. Ensure strict adherence to
- accident prevention measures 5. Conduct thorough health
- management

### **Making Equipment Safer**

In fiscal 2014, KUBOTA created the Equipment Safety Improvement Guidelines for investment in equipment and safety measures, identifying six categories of risk for serious injury involving the melting process, contact with heavy objects, falling from high places, contact with vehicles, wedging in presses, and harmful substances.

In fiscal 2015, KUBOTA plans to continue investing in equipment based on the Equipment Safety Improvement Guidelines. We will also create new guidelines that address four risks: (1) wedging and entanglement in machinery, (2) flying and falling objects, (3) electrocution and electrical burns, and (4) fire and explosions.

### Trends in the accident frequency rate 1.6 1.4 1.2 1.0 n 94 0.8 0.6 0.4 0.32 0.21 0.2 2011 2009 2013 Average for the manufacturing industry - KUBOTA Corporation

in Japan

### Personnel Training Based on KUBOTA Group Safety-Conscious Employees

Since fiscal 2014, the KUBOTA Group has been promoting efforts to raise awareness of safety among employees. In fiscal 2015, we defined the type of person who is a safe person, behaving in ways that always protect themselves and others. We also created the Basic Guidelines for Human Safety as a set of fundamental rules and manners for safety and focused on improving awareness of safety among all employees of the KUBOTA Group, both inside and outside Japan. KUBOTA will continue to educate employees at its business sites around the world about how to recognize danger and rely on their KYT (how to sense danger training) to improve their ability to avoid danger.



KYT training session

### Creating a Physically and Mentally Healthy Work Environment

### **Efforts To Promote Mental Health**

Based on the KUBOTA Group Safety and Health Guidelines, we have formulated KUBOTA Mental Health Improvement Targets, and offered consultation services with medical staff to assist with analyzing work-related stress and learning more about taking care of oneself, as an opportunity to recognize one's own stress levels and learn how to deal with this stress. We also trained managers and supervisors on how to care for the health of their line workers with the aim of detecting early on and preventing mental health issues for the managers and supervisors as well as their line workers.

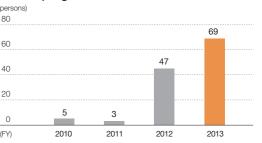


Mental health training session

### Efforts to Promote Work-Life Balance

KUBOTA Corporation has formulated various ideas based on the Act on Advancement of Measures to Support Raising Next-Generation Children to enable employees to work in a manner that is in harmony with their private lives. Its efforts along these lines were officially recognized, leading to receipt of "Kurumin" mark (Next Generation Recognition Mark) in 2009, 2011 and 2013.




\* Acquisition of the "Kurumin" mark requires recertification based on action plans created every two to five years. KUBOTA receives this certification based on action plans created every two years.

### Action plan based on the Act on Advancement of Measures to Support Raising Next-Generation Children

(the two-year period between April 1, 2013 and March 31, 2015) • Enhance the childbirth leave program for female employees

• Continue the campaign to encourage male employees to use the childcare leave program

### Status of male employees using the childcare leave program





aining for employees that took childcare leave at the head office employees learn tips and techniques for eventually returning to a rewarding career while raising

### Initiatives to Make Sure Employees Use Vacation

We encourage employees to use their paid vacation days from the standpoint of maintaining their mental and physical health, preventing overwork, and striking a worklife balance. KUBOTA aims to be a company where employees work with enthusiasm while achieving harmony between their work and private lives.

### **Encouragement Methods**

- 1. Recommend that employees take paid vacation during labor-
- 2. Create an environment where it is easy to take paid vacation
- 3. Foster opportunities to rethink the way one works

### **Specific Measures**

- 1. Set achievable targets Company-wide (for the three-year period from fiscal 2015 to fiscal 2017)
- 2. Continue and strengthen measures unique to each business site, spread awareness and disseminate information about taking paid vacation
- Discuss efficient ways to work, visualize work and create work manuals to promote communication about taking paid vacation

# Respecting Human Rights and Promoting Diversity

### Raising Awareness of Human Rights

In line with the Code of Conduct of the KUBOTA Group shown below (excerpts), the Group makes efforts to raise awareness of human rights in Japan and overseas, respect international human rights guidelines, and ensure thorough compliance with relevant laws in the respective countries and regions.

### Code of Conduct (excerpts)

- We support the Universal Declaration of Human Rights, and respect the human rights of all people.
- We do not discriminate or violate human rights on the basis of
- Add not destinate the state of the stat

Having established the Human Rights Advancement Planning & Coordination Committee in Japan, we are creating a system where all employees receive human rights training based on the action guidelines of the committee, with the ultimate aim of fostering a corporate culture that values people.

KUBOTA promptly responds to inquiries received via a consultation system available at all of its bases, including

overseas. Managers of consultation services in Japan receive training once a year to improve their counseling ability.

In addition, KUBOTA reviews background checks, such as



credit checks, once a year to look for any improper practices from the standpoint of respecting human rights and protecting privacy.

Human rights training for directors and managers (instructor: Kazuhiro Nozawa from the Mainichi Newspaper)

# Number of employees who joined human rights training sessions during FY2013

| In-house training | Outside training | Total (total participants) |
|-------------------|------------------|----------------------------|
| 21,012            | 551              | 21,563                     |

### K-Wing Activities

KUBOTA proactively supports the Kubota Women's Initiative Diversity Network & Group (K-Wing), a network for female employees, and participates in outside forums. The number of women in managerial positions has increased every year, rising from 24 in 2009 to 56 in 2014 (as of April). KUBOTA supports women at work through female employee networks inside and outside the Company.

### <Participating Forums>

- ① The 10th Women's Networking Forum in OSAKA 2013
- ② Young Women's Career Design Forum
- $\ensuremath{\mathfrak{I}}$  The 9th Women's Networking Forum in Tokyo



A scene from the Women's Networking Forum

### **Creating Workplaces for Disabled Persons**

KUBOTA has founded two specific subsidiaries, Kubota Works Co., Ltd. and Kubota Sun-Vege Farm Co., Ltd., and operates them to create jobs and a work environment for disabled persons.

Kubota Sun-Vege Farm Co., Ltd. engages in hydroponic cultivation of safe and reliable vegetables with the aims of seeking to promote the independence of persons with disabilities and their coexistence with local communities, as well as using abandoned fields to support the stimulation of agriculture in Japan. The vegetables produced by the company are not only used by the cafeterias at KUBOTA business sites in Japan and sold internally, but are also marketed in supermarkets in Osaka Prefecture.



Kubota Sun-Vege Farm Co., Ltd

# Maximizing our Human Resources with Appointments and Training to Support Global Business Development

### Creation and Dissemination of KUBOTA Global Personnel Management Policy

Based on the KUBOTA Global Identity, its corporate philosophy, KUBOTA has created the KUBOTA Global Personnel Management Policy as its basic policy for personnel management across the Group.

The policy covers a total of five categories that are

important in the management of personnel: hiring, training, evaluation, compensation, and the type of person sought after the KUBOTA Group. Based on this content, we aim to create and share personnel policies for the entire KUBOTA Group.

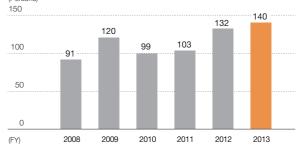
### Global Human Resources Conference Held

The Global Human Resources Conference was held for the first time with the heads of human resource departments from overseas affiliates.

Attendees of the conference discussed the Global Human Resource Management Policy, shared information about each other's personnel systems, and debated personnel policy within the context of globalization.

The conference served as an opportunity to forge stronger connections between the heads of human resource departments at overseas affiliates and address personnel issues arising from the globalization of business.




Global Human Resources Conference

### Foreign Language Training for New Hires

Since fiscal 2009, KUBOTA has helped young employees improve their foreign language skills and adaptability to foreign cultures by offering about one month of foreign language education and overseas manufacturing base training to all new employees.

Since fiscal 2013, KUBOTA has continued to improve these programs, by dispatching employees overseas after having learned basic English skills in Japan, and creating new programs for employees with foreign language skills above a certain level.

# Number of employees dispatched for language training (Persons) 150 140



### **Expanding the Overseas Trainee System**

Since 1997, KUBOTA has dispatched a number of employees overseas each year for training purposes. We plan to send more employees overseas in FY2014 as a part of efforts to foster global human resources.

As one of the most effective policies for fostering global personnel, KUBOTA will continue to dispatch employees overseas in 2014.



Personnel department trainee Mizuho Tanaka (dispatched to Kubota Saudi Arabia Company, LLC)

# Personnel Policies and System (KUBOTA)

### 1. Basic Personnel Policy

Foster a corporate culture full of vigor with emphasis on taking on challenges and creativity

Find the right person for the right job based on their abilities and ambitions

### 2. Personnel System

### Basic Idea of Personnel System Operations

### **Equal opportunity**

Each employee can strive to attain any role or position.



### Right person for the right job

Aim to place the right person in the right job based on their abilities and ambitions

### Main Points of Personnel System

- There are three career paths comprising expert positions, staff positions and technical positions for different roles and responsibilities. The personnel system separates personnel training, assignments and compensation for each of these career paths.
- Employees can change career paths based on their abilities and ambitions.

| 1                                       |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                             |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Career paths                            | Expert positions (management class)                                                                                                                                                                                          | Staff positions (administrative and general class)                                                                                                                                                                                      | Technical positions (technical class)                                                                                                                                                                                                       |
| Definition of personnel<br>(main roles) | People that drive the business, solve problems that arise in operations, and exhibit a high level of performance based on their willingness to take on challenges, advanced expertise, and extensive experience and know-how | People that contribute to the business, take on challenges for their own growth, and take on broad responsibilities, especially work that requires expertise, creativity and experience, while aiming to establish a field of expertise | People that are in charge of work responsibilities, supervise and nurture subordinates, and achieve work objectives People that improve work processes based on advanced skills, knowledge and experience, and can perform complicated work |
| Training and education                  | Department and section head class:<br>management training     Upcoming management assistants:<br>selective training                                                                                                          | Specialized training for specific objectives that employees can choose on their own from a curriculum of about 140 courses of varying difficulty and subject matter                                                                     | Rank-based training to improve technical skills and quickly foster supervisors with a particular focus on training in the "5-Gen" principles                                                                                                |
| Evaluations                             | Employees set targets with their bosses at it<br>the year to evaluate progress toward these review meeting at the end of the year.     Bosses evaluate their subordinates, including                                         | targets, followed by a self-evaluation and a                                                                                                                                                                                            | Some evaluations also follow the framework on the left.                                                                                                                                                                                     |
| Rotation                                | The work responsibilities of each employee an consideration workplace needs and their prefethe same work for long periods.                                                                                                   |                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                           |
| Ranking*                                | Five rankings     Moves up in the rankings based on contribution to performance                                                                                                                                              | Seven rankings     Moves up in the rankings based on contribution to performance (Some require testing)                                                                                                                                 | 11 rankings     Moves up in the rankings based on contribution to performance (Some require testing and technical qualifications)                                                                                                           |
| Salaries                                | Monthly salaries are reviewed every year until salary.                                                                                                                                                                       | the age of 58 (56 for expert positions). Each rank                                                                                                                                                                                      | king has upper and lower limits to monthly                                                                                                                                                                                                  |
| Bonuses                                 | Bonuses are designed to reflect consolidated performance, affiliated business performance, and individual performance.                                                                                                       | Bonuses are designed to reflect individual per standards in annual labor-management negoti                                                                                                                                              |                                                                                                                                                                                                                                             |
| Retirement benefits                     | Retirement benefits are based on a point system                                                                                                                                                                              | m that reflects rank, years of service, and evaluati                                                                                                                                                                                    | ion.                                                                                                                                                                                                                                        |

<sup>\*</sup> The basis upon which compensation is determined

# Fostering a CSR Mindset

### **Activities to Instill the Corporate Philosophy**

To raise awareness of our new corporate philosophy, the KUBOTA Global Identity that was penned in October 2012, training sessions were held at each base around the world from July 2013 to March 2014. At the training sessions, employees listened to an explanation of the corporate philosophy, watched a DVD about the founder and history of KUBOTA, and then discussed their feelings and opinions. We plan to continue these training sessions to foster awareness of the problems we are trying to solve in the fields of food, water and the environment as a group of 30,000 employees.

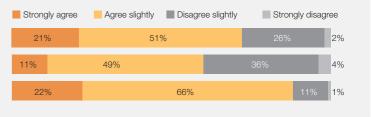


### **CSR Forum for Management**

In December 2013, we held the CSR Forum for managers, which was attended by a total of 113 directors, presidents of Group companies, and other managers.

At the CSR Forum, we welcomed Etsuhiro Hosoda from Canon Marketing Japan Inc. as a guest speaker to talk about the pulse of CSR within the context of businesses responding to the changing demands and expectations of society (stakeholders), as well as CSR branding as a competitive advantage that expresses the distinguishing aspects of a corporation that integrates business with CSR. We will continue promoting CSR management and the building of our corporate brand by creating opportunities to deepen the understanding of CSR among employees and managers responsible for its promotion.




### **CSR Awareness Survey for Employees**

In July and August 2013, we surveyed KUBOTA Group employees in Japan about their awareness of CSR, and approximately 6,400 people took the survey. With a much larger sampling of survey takers and content, we were able to ascertain their awareness and understanding of the corporate philosophy, code of conduct, CSR

management and compliance. In the free comment section, many survey takers wrote positive ideas about improving the KUBOTA Group. We plan to continue conducting the CSR survey every year with the same questions to help increase employee awareness and identify areas for continued improvement as a company.

# Compilation of answers to key questions in employee CSR awareness survey

- Do you know that our mission is to help solve problems related to food, water and the environment? What do you think you can do to help?
- Do you know a lot about the KUBOTA Hot Line system?
- Is communication in your workplace good, with people greeting each other every day?



# Contributing to International and Local Societies

The KUBOTA Group aims to coexist with society as a good corporate citizen, building relationships of trust through communication with local communities through respect for the culture and customers of each country and region.

# The KUBOTA e-Project



Six e-perspectives



In an effort to contribute to society in the areas of food, water and the environment, the KUBOTA Group commenced the KUBOTA e-Project in 2008. The KUBOTA Group promises to continue supporting the prosperous life of humans while protecting the environment of this beautiful earth. Through this promise to everyone, we seek the understanding and cooperation of stakeholders as we contribute to the creation of a sustainable society.



# Support for the restoration of

We support efforts to restore abandoned farmland throughout Japan by offering agricultural machinery.

### KUBOTA GENKI Agriculture **Experience Workshop**

This program aims to deepen understanding of agriculture and provide educational opportunities through rice growing agricultural experiences such as rice transplanting and harvesting as well as tasting the harvested rice.



# Developing regional brands and

We make every possible effort to expand opportunities to generate awareness of fresh and processed food products that are the pride of each region of Japan.

# Introduction of the activities of

We introduce the activities of farmers with vision about agriculture that coexists harmoniously with the regional environment



# Improving global water

We make every possible effort to reduce the number of people who do not have access to safe water. To this end, we support the construction of wells in India being undertaken by the Japan Asian Association and Asian Friendship Society, both of which have been active in Asia for

### Social Contribution Activities through Corporate Sporting Events

KUBOTA manages the Kubota Spears as a corporate rugby sports team. Based in Funabashi, Chiba, the team plays in the top tier of the league and volunteers to teach rugby and help with cleanup efforts and beautification programs to foster the adoration of local fans.









# **KUBOTA** e-Day Volunteer

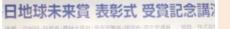
KUBOTA employees volunteer in community beautification and cleanup activities throughout the region.

# "UCHIMIZU" solution for heat

KUBOTA employees are creating opportunities to draw attention to global warming through "UCHIMIZU" activities around KUBOTA business locations, which involves lowering outside temperatures by sprinkling water on the pavement.



# KUBOTA "TERRA-KOYA"


We sponsor the KUBOTA "TERRA-KOYA" summer camp, which enables children to experience the abundance of nature as well as learn about the importance of the global environment. Since 2011, we have been inviting children from disasteraffected areas to this summer camp as part of our efforts to assist reconstruction efforts following the Great East Japan Earthquake.



# Kubota Sun-Vege Farm Co.,

Kubota Sun-Vege Farm Co., Ltd. engages in hydroponic cultivation of vegetables in order to create an environment that allows people with disabilities to work actively.

Water Cycle Education Program This program provides opportunities to raise awareness among young people about water and environmental preservation.





### Mainichi Earth Future Prize

KUBOTA sponsors Mainichi Earth Future Prize, a program that invites various specialist instructors to teach classes to junior and senior high school students who have an interest in science.

### KUBOTA Active Lab

KUBOTA Active Lab offers participating high school students the opportunity to learn on their own about topics concerning food, water and the environment.



### **Overseas Social Contribution Activities**

The KUBOTA Group engages in a wide variety of activities at its overseas bases to give back to the community. Through donations, tree planting, and disaster relief, we aim to be a company with strong grass-roots support.







# Volunteer activities by new employees

Employees from the KUBOTA Group have continued to volunteer in regions adversely affected by natural disasters as part of an aim to foster personnel through reconstruction support. New employees that volunteer come into direct contact with people affected by the natural disaster and gain first-hand knowledge of conditions in the area, providing them with opportunities to learn about how companies interact with society.



### orming circles of support through community gardens

Amid prolonged residencies in temporary housing, the KUBOTA Group is cooperating with local governments, NPOs and other companies to plan and build community gardens for the purpose of creating a space for residents to have fun and get to know each other better.





# Support for buckwheat harvesting and reconstruction of areas affected by natural disasters

In Rikuzentakata City, Iwate Prefecture, KUBOTA provided assistance for the buckwheat harvest as a way to support agricultural associations that lost agricultural machinery to the tsunami. These agricultural associations plan to expand farmable land area and revive soba (buckwheat noodle) restaurants in the region. We will continue to support people working to restore agriculture in areas affected by the natural disaster.



# Supporting opportunities for residents in temporary housing to interact via buckwheat noodle making events

KUBOTA also cooperates with NPOs working to create spaces for residents of temporary housing to get to know each other better. In Iwaki City, Fukushima Prefecture, along with the Iwaki City Onahama District Reconstruction Support Volunteer Center, we provided support for buckwheat noodle-making events with temporary housing residents in Naraha Town.



# ture in the Tohoku region.



### Hokugen Yuzu Project to support farmland revitalization

Fostering the next generation of farmers

The KUBOTA Group has continued to offer special classes about the direct

sowing of iron-coated seeds to the students of agricultural high schools in

Prefecture, which were greatly damaged by the tsunami and earthquake.

Through rice growing technology that replaces rice transplanting techniques,

we support these young students as leaders of the reconstruction of agricul-

Miyagi Prefecture and Iwaki Agricultural High School in Fukushima

The KUBOTA Group lent its support for the development of new farmland through the restoration of abandoned agricultural areas in answer to a call from local residents working to revitalize agriculture and reconstruct Rikuzentakata City. Iwate Prefecture is turning yuzu (a citrus fruit) grown in Hokugen into a brand name under the Hokugen Yuzu Project for creating a new regional specialty. Harvested yuzu are used to make liquors and sweets.





### Wine Toast Project to support grape fields

In Kamaishi City, Iwate Prefecture, we helped locals turn abandoned farmland into grape fields. Local residents have been working hard to invite the 2019 Rugby World Cup and revitalize Kamaishi through celebrations with wine. We hope the region will regain its vitality.





At internal events, we make an effort to provide refreshments made in the Tohoku region. Social events that take place at the Head Office are designed to support disaster-affected areas by eating, drinking and buying products from these areas in order to promote goodwill toward the people of the affected areas. In the past, we have served seafood from Sanriku, boutique sake from Rikuzentakata, and other specialties from Fukushima.

drinking regional specialties







### KUBOTA products deployed as reconstruction assistance

The KUBOTA Group's various water- and environment-related products are being used in the restoration, recovery and urban development of disaster-stricken areas. Examples include the restoration of water supply and sewage lines, construction of pipes and treatment of effluent for temporary housing structures, and the restoration of agricultural water.



Iron pipes

This is used in the restoration and maintenance of lifelines, such as water supplies, sewage lines, and gas lines.



Valves

This is used in the restoration and maintenance of lifelines, such as water supplies, sewage lines, and gas lines, by controlling liquids and gases.



Pumps

This is used for emergency drainage as a countermeasure for flooding caused by heavy rainfall and spring tides.



Plastic pipes

This is used in the restoration and maintenance of lifelines, such as water supplies, sewage lines, and gas lines.



Water treatment plant
This is used to purify waste water, including residential and industrial sewage.



Waste water treatment tanks
This facility processes wastewater

This facility processes wastewater from temporary housing in regions with insufficient sewage lines.



Spiral welded steel pipes
This is used as foundation piles in a variety
of structures, such as bridge foundations,
ports, rivers, and building foundations.



Truck scales
Truck cargo, such as debris, is weighed.

KUBOTA REPORT 2014 40

# **Environmental Management Basic Policy**

With "For Earth, For Life" as our Brand Statement, the KUBOTA Group continues to support the creation of abundance in people's lifestyles while protecting the beautiful global environment. As a sustainable company, KUBOTA supports the creation of a sustainable society by working to find solutions to problems in the fields of food, water and the environment through our business activities.

### The KUBOTA Group Environmental Charter

- The KUBOTA Group aspires to create a society where sustainable development is possible on a global scale.
- The KUBOTA Group contributes to the conservation of global and local environments through its environmentally friendly operations, products, and technologies.

### The KUBOTA Group Environmental Action Guidelines

### 1 Environmental Conservation Efforts in All Business Activities

- (1) We promote environmental conservation measures in all stages of our corporate activities, including product development, production, sales, physical distribution, and service.
- (2) We also request that our suppliers understand the importance of environmental conservation efforts and cooperate in this regard.

### 2 Global Environmental Conservation

KUBOTA REPORT 2014

- (1) We promote global environmental conservation measures for stopping climate change, creating a recycling- based society, and controlling chemical substances.
- (2) We promote global environmental conservation by providing technologies and products contributing to solving environmental problems.
- (3) We strive to ensure our corporate activities are friendly to the natural environment and biodiversity.

### 3 Environmental Protection to Create a Symbiotic Relationship with Local Societies

- (1) We make efforts in the reduction of environmental risks and promote our business activities with proper consideration for the protection of local environments, including pollution prevention.
- (2) We actively participate in environmental beautification/education activities in local communities.

### 4 Our Voluntary and Organized Efforts in Environmental Conservation

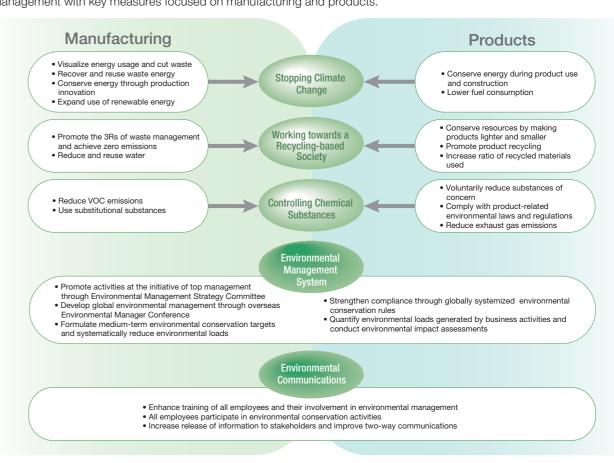
- (1) By introducing the environmental management system and establishing voluntary targets and action plans, we work on our daily business operations.
- (2) We endeavor to enhance environmental awareness through active environmental education/enlightenment activities.
- (3) We actively provide the stakeholders with environment-related information.
- (4) We collect stakeholders' opinions broadly through environmental communication, and reflect the findings in our environmental activities.

### Message from the Environmental Conservation Control Officer

The KUBOTA Group has made it our mission to solve problems in the fields of food, water and the environment and contributes to the conservation of the global environment through "Made by KUBOTA" manufacturing activities. Since FY2014, management has endeavored to further strengthen environmental management by guiding the implementation of measures to update our environmental management promotional structure, reduce environmental loads and environmental risks, and expand a line-up of environmentally friendly products. In June 2014, KUBOTA made a commitment to work towards our new targets to the Japanese Environment Minister, and was recertified as an "Eco-First Company". On this occasion, we would like to improve our environmental communications with our customers, employees and other stakeholders in a bid to enhance our brand value. The KUBOTA Group will unify our efforts to help conserve the global environment.



Senior Managing Executive Officer GM of Quality Assurance & Manufacturing Headquarters (Environmental Conservation Control Officer)


### Kenshiro Ogawa

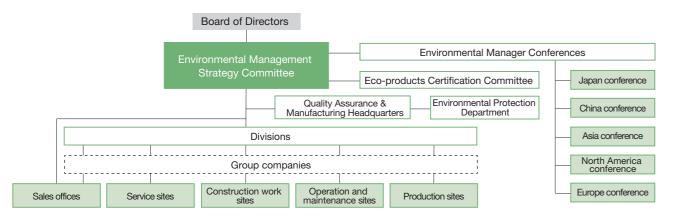
# Basic Direction of Corporate Environmental Management



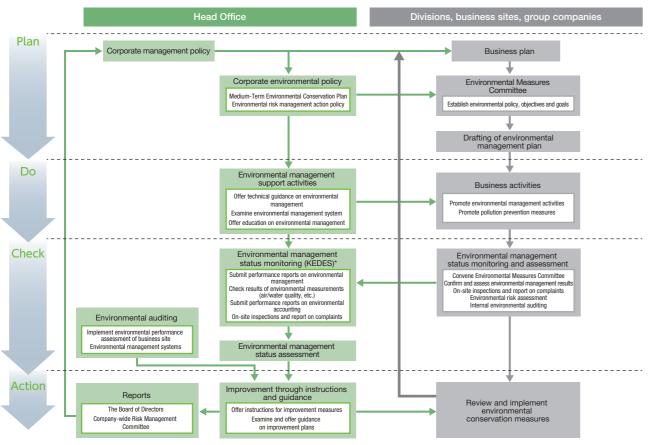
### Key measures

Based on the Basic Direction of Corporate Environmental Management, the KUBOTA Group engages in environmental management with key measures focused on manufacturing and products.




KUBOTA REPORT 2014 4

# **Environmental Management Promotion System**


In FY2015, the Environmental Management Strategy Committee was newly established to bolster and accelerate environmental management. By transitioning to a management-led promotional structure, we aim to take a more strategic and innovative approach to environmental management.

Environmental Manager Conferences, which had been held only in Japan, are held in China, Asia, North America and Europe to globally advance environmental management across the KUBOTA Group.

### Organization structure



### The KUBOTA Group environmental management system



\*KEDES: Kubota Ecology Data E-System

# FY2016 Medium-Term Environmental Conservation Targets

The Results for FY 2014

The KUBOTA Group has created the FY2016 Medium-Term Environmental Conservation Targets in line with our Basic Direction of Corporate Environmental Management to systematically promote environmental conservation activities in each stage of manufacturing and product development. As presented below, results for FY2014 show that we are generally on track to achieve our targets for FY2016.

| Issues                                                 | Actions                         | Management<br>Indicators <sup>2</sup>              | Scope                           | Base<br>FY | Targets<br>FY2016 | Results<br>FY2014*2 | Self-<br>evalua-<br>tion*6 | Achievement Status<br>(reasons for not achieving FY2016<br>targets)                                                               | Detail<br>Page |
|--------------------------------------------------------|---------------------------------|----------------------------------------------------|---------------------------------|------------|-------------------|---------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------|
| Stopping climate                                       | Reduce CO2                      | CO <sub>2</sub> emissions per unit of production*3 | Global production               | 2009       | ▲14%              | ▲27.5%              | 0                          | We are making progress on energy                                                                                                  | 47             |
| change                                                 | Energy<br>conservation          | Energy use per unit of production                  | Global production               | 2009       | ▲14%              | ▲22.2%              | 0                          | conservation in production facilities, air handling systems and lighting.                                                         | 47             |
|                                                        |                                 | Waste discharge<br>per unit of<br>production       | Global<br>production            | 2009       | ▲14%              | ▲32.5%              | 0                          | We are making progress on waste separation and introduction of returnable containers.                                             | 49             |
| Working towards a                                      | Reduce waste                    | Recycling ratio*4                                  | Production<br>sites in Japan    | _          | 99.5% or<br>above | 99.8%               | 0                          | We are implementing waste conversion to valuable resources and maintaining the higher recycling ratios than the target.           | 49             |
| recycling based society                                |                                 | i nooyomig ratio                                   | Overseas<br>production<br>sites | _          | 90.0% or above    | 79.6%               | $\triangle$                | We are not currently achieving the target due to an increase in landfill waste volume that resulted from a change in contractors. | 49             |
|                                                        | Conserve water resources        | Water consumption per unit of production           | Global<br>production            | 2009       | ▲21%              | ▲37.8%              | 0                          | We are making progress on water conservation by the installation of wastewater recycling facilities.                              | 51             |
| Controlling chemical substances                        | nemical Reduction of VOCs*1     |                                                    | Global<br>production            | 2009       | ▲21%              | ▲37.1%              | 0                          | We are making progress on VOC reduction by improving coating efficiency and use of non-VOC paints                                 | 52             |
| Improve<br>environmental<br>performance of<br>products | Expand line of Eco-<br>Products | Sales ratio of Eco-<br>Products <sup>*5</sup>      | Global                          | _          | 40%               | 18.1%               | $\triangle$                | In FY2014, we certified 35 products as Eco-Products.                                                                              | 53             |

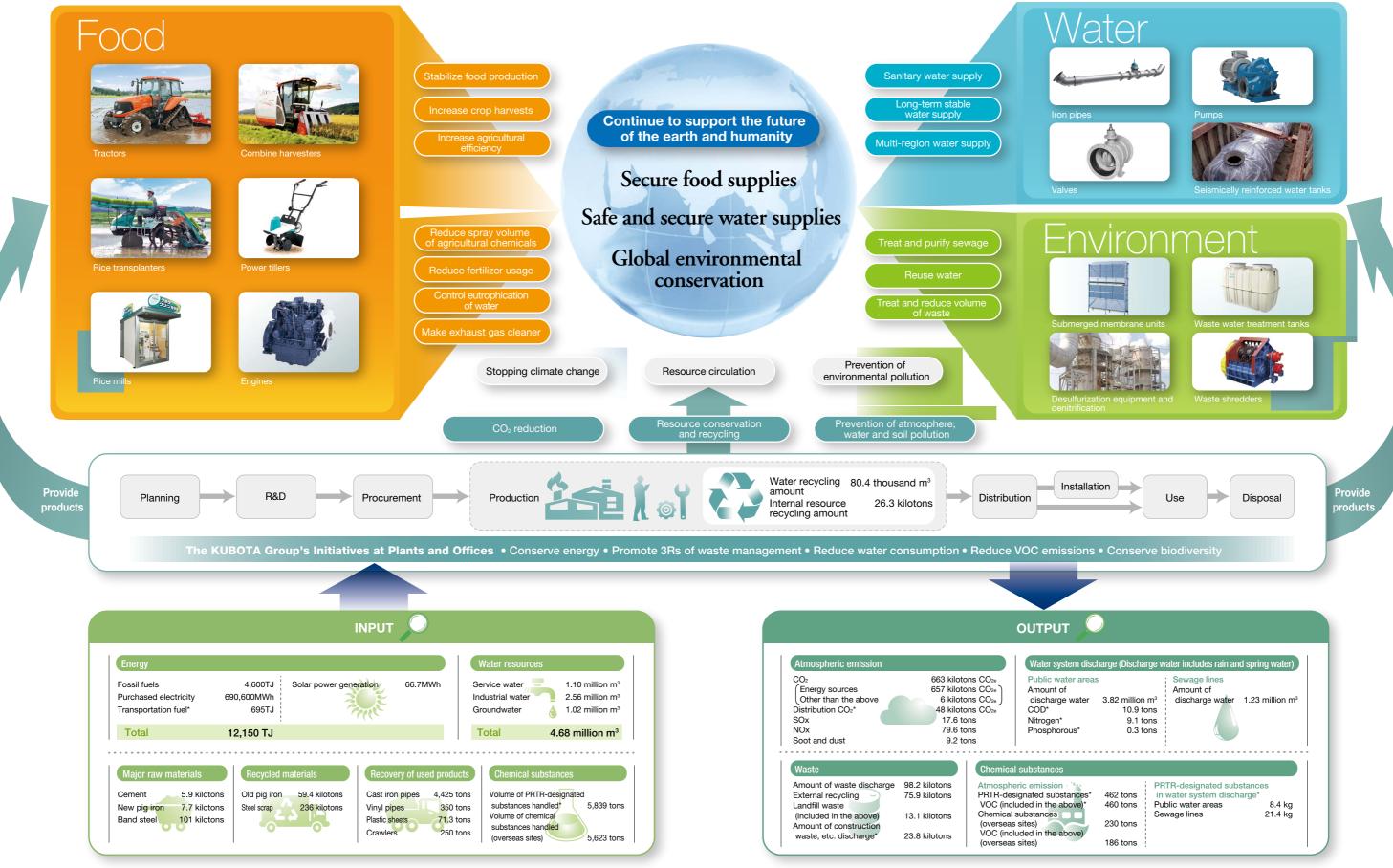
- \*1 VOCs comprise the six VOCs that are most prevalent in emissions from the KUBOTA Group, namely xylene, toluene, ethylbenzene, styrene, 1, 2, 4-trimethylbenzene, and 1, 3, 5-trimethylbenzene
- \*2 The figures per unit of production represent the intensity of the environmental load per unit of production money amount. The exchange rate of the base fiscal year is used when translating the production value of overseas sites into yen.
- \*3 CO2 emissions include greenhouse gases from non-energy sources. We use the emissions coefficient for electricity of the base fiscal year in our calculation of CO2 emissions from energy sources.
- \*4 Resource recycling ratio (%) = (Sales volume of valuable resources + External recycling volume) / (Sales volume of valuable resources + External recycling volume + Landfill disposal) × 100. Heat recovery is included in external recycling volume.
- \*5 Sales ratio of Eco-Products (%) = Sales of Eco-Products / Sales of products (excluding construction work, services, software, parts and accessories) × 100

\*6 Self-evaluation rating symbols: ○ Target exceeded (by at least 20%) ○ Target reached △ Target not yet reached

Environmental information in the online version of the KUBOTA REPORT 2014 has received the third-party assurance from KPMG AZSA Sustainability Co., Ltd. Indicators covered by this assurance are marked with the psymbol.

# As an "Eco-First Company"

In June 2014, the KUBOTA Group created the FY2016 Medium-Term Environmental Conservation Targets with a commitment to achieving the following five objectives, and was recertified as an "Eco-First Company." The KUBOTA Group will aggressively work toward achieving these objectives based on this new commitment.

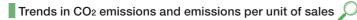

- Work towards a recycling-based
- Stop climate change
- Reduce emission into the atmosphere
- Develop environmentally friendly products
- Conserve biodiversity

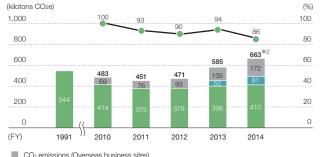


Eco-First certification

Access our website for further information about Eco-First Company: http://www.kubota-global.net/environment/ecofirst.html

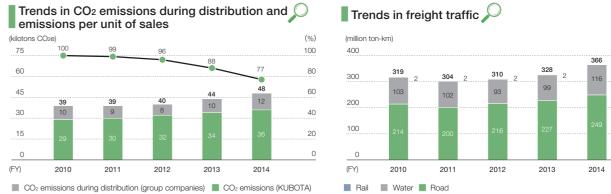
# Business Activities of the KUBOTA Group that Aims to Contribute to Global Environmental Conservation





45 KUBOTA REPORT 2014

# **Stopping Climate Change**

The fifth report issued by the Intergovernmental Panel on Climate Change (IPCC) states that there is little room for doubt about the global warming of climate systems and reports that human activity is highly likely to be a factor behind climate change. The KUBOTA Group aims to reduce CO2 emissions, mainly through measures to conserve energy, to contribute to stopping climate change.


### CO<sub>2</sub> Emissions (scope 1 and scope 2)





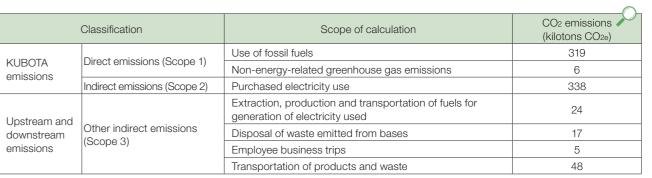
- Impact of electricity coefficient in Japan
- CO<sub>2</sub> emissions (Business sites in Japan, only Kubota production sites for FY1991)
- CO<sub>2</sub> emissions per unit of sales (Group-wide) (compared to FY2010)

# CO<sub>2</sub> Emissions during Distribution (business sites in Japan)



-O-CO2 emissions during distribution per unit of sales (compared to FY2010)\*

In FY2014, CO<sub>2</sub> emissions during distribution stood at 48 kilotons CO<sub>2</sub>e and increased 8.8% compared to the previous fiscal year. However, CO<sub>2</sub> emissions during distribution per unit of sales decreased 12.7% owing to greater transportation efficiency from mixed cargo and the promotion of modal shift. (See page 62 for details.)


# Greenhouse Gas Emissions throughout Value Chain

The KUBOTA Group makes concerted efforts to figure out greenhouse gas emissions throughout our value chain in addition to our business sites. Based on guidelines issued by the Japanese Ministry of the Environment, the KUBOTA Group calculates greenhouse gas emissions based on Scope 1, Scope 2 and Scope 3, and continues to expand the scope of our calculation of greenhouse gas emissions.

\* Basic guidelines for calculating greenhouse gas emissions in supply chains

Example Activities of Each Scope

Scope 2



Scope 3

Transportation and

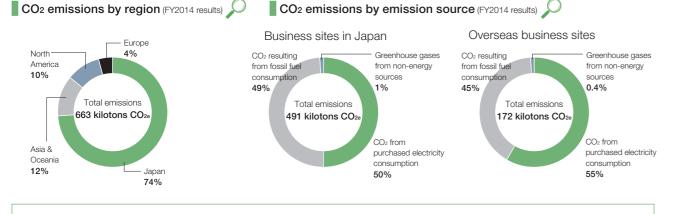
Transportation of

Scope 3

products and goods

treatment of generated

Scope 3


Scope 3

The scope of business emissions as defined in the Greenhouse

Gas (GHG) Protocol
Scope 1: Direct GHG emissions from businesses themselves
Scope 2: Indirect emissions associated with the consumption of
electric power, heat, and steam supplied by others
Scope 3: Other indirect emissions that occur in a Company's value

Disposal of products

Use of products and



# Introduction of Heating Systems that Use Waste Heat

The company has been producing agricultural machinery such as mowers since 1877. In 2013 the company has changed the heating system in the factory and offices from oil burners to district heating. 40 oil burners are replaced by 134 calorifiers. The calorifiers are supplied with hot water, supplied with waste water from an electricity plant in the nearest town. This investment will reduce our capacity cost, CO<sub>2</sub> emission and SO<sub>x</sub>. From 2015 we will only use oil in our hardening process.





Kverneland Group Kerteminde Niels Erik Andersen

In FY2014, CO2 emissions stood at 663 kilotons CO2e and

increased 13.3% compared with the previous fiscal year. We

made efforts to conserve energy by upgrading to highly efficient

equipment and reducing unproductive use of energy, but the CO<sub>2</sub>

emission coefficient for electricity worsened due to the earth-

quake and natural disaster in Japan, and CO2 emissions

increased overseas as a result of higher production volume.

However, the CO<sub>2</sub> emissions per unit of sales decreased 9.1%

compared to the previous fiscal year.

\*3 CO2 emissions include GHG from non-energy sources

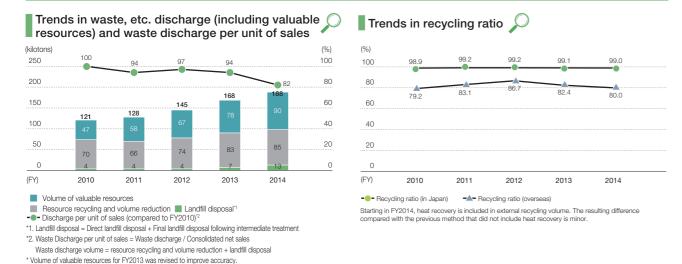
\*1 CO<sub>2</sub> Emissions per unit of sales = CO<sub>2</sub> emissions / Consolidated net sales

\*4 CO<sub>2</sub> emissions from FY2010 to FY2013 were revised to improve accuracy

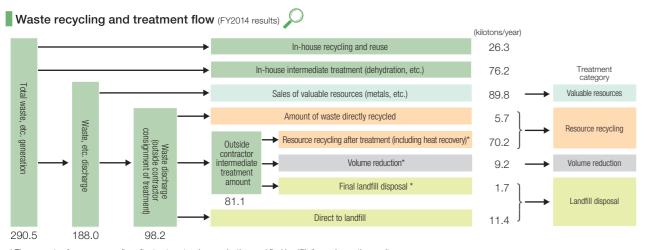
\*2 CO<sub>2</sub> emissions (663 kilotons) include portions of CO<sub>2</sub> that were not released into the

atmosphere but absorbed as carbon into products such as iron pipes (26 kilotons CO<sub>20</sub>)

 Extraction and pro-• Indirect emissions from curement of raw mater use of purchased electricity, heat and Company's own facilities Scope 3 Use of fuels Emissions from Production of raw industrial materials processes Transportation of raw materials, etc Scope 3 • Employee commuting Scope 3


Scope 3

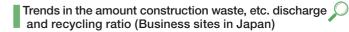
<sup>\*</sup> CO<sub>2</sub> emissions during distribution per unit of sales = CO<sub>2</sub> emissions during distribution / Consolidated net sales

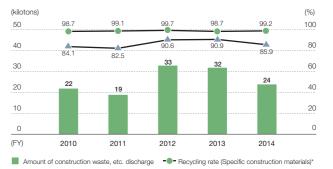

# Working towards a Recycling-based Society—Promotion of 3Rs

Resource depletion and insufficient space for landfill are just a few of the problems faced by a society based on mass production, mass consumption, and mass disposal. The KUBOTA Group makes every effort to reduce resources needed in our business activities and effectively use the resources we do need, while reducing waste and recycling resources.

### Wastes from Business Sites




In FY2014, waste discharge amount was 98 kilotons, an increase of 8.9% from the previous fiscal year. However, waste discharge amount per unit of sales was reduced by 12.8%, reflecting higher consolidated net sales and cuts in the volume of effluent discharged due to the installation of wastewater treatment systems at an overseas business site.




\* The amounts of resource recycling after treatment, volume reduction, and final landfill disposal were the results of surveys conducted by outside intermediate treatment companies.



# Waste generated from Construction Work





Percycling rate (Including construction waste other than specific construction materials)\*

\* Recycling rate =[sales of valuable resources + resource recycling + volume reduction (heat recovery)]/ amount of construction waste, etc. discharge (including sales of valuable resources) x 100 (%)

# Handling and Storage of Equipment Containing PCBs

Transformers, capacitors and other equipment containing polychlorinated biphenyls (PCBs) are properly delivered, stored and handled based on the Japanese Act on Special Measures concerning Promotion of Proper Treatment of PCB Wastes. Equipment containing PCBs are being disposed of steadily, being with sites for which

Amount of waste discharge by type

discharge

kilotons

scrap 2%

- Slag **54**%

(FY2014 Results)

Scrap metal 4% –

Soot and dust 8%

Sludge 10%

Glass, concret

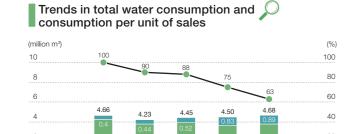
waste 3%

acceptance at PCBs treatment facilities are available.

Equipment containing PCBs are locked in storage, periodically inspected, and environmentally audited as part of a thorough management system. We plan to properly process these wastes by the treatment deadline of March 2027.

# Working to Reduce Waste with Dehydrators (KUBOTA Runfil)

At the KUBOTA Hanshin Plant in Mukogawa, sludge water generated from the wastewater processing facility at the plant is dehydrated to reduce its volume. The introduction of the KUBOTA Runfil dehydrator in April 2012 has successfully reduced the volume of the sludge water, cutting the total volume by 10% and reducing the water content of residual sludge from 63% to 59%. KUBOTA Runfil is also easier to maintain and manage because its high-speed processing reduces the frequency of operations. We are trying to contribute to the environment through the volume reduction in sludge water and reductions in energy use from lower operating frequency.


\* In July 2013, KUBOTA Runfil won the Japanese Minister of Economy, Trade and Industry Prize in the 39th Excellent Environmental Equipment Awards sponsored by the Japan Society of Industrial Machinery Manufacturers. The award recognized the successful development of innovative methods and the considerable reduction of time required to exchange filter cloth and perform other maintenance duties commonly associated with filter presses.

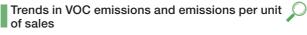


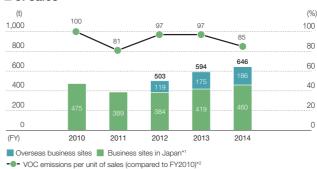
(From left)
Yasuhiro Nakaya (supervisor), Yasutaka Kamata,
Tetsuo Kuroyama (foreman), Makoto
Kaminogoya, Yasuhiro Fukuda (group leader)

# Working towards a Recycling-based Society —Conservation of Water Resources

The Organization for Economic Cooperation and Development (OECD) has reported that more than 40% of the world's population will live near river basins with severe water shortages by 2050. The KUBOTA Group aims to effectively use water resources by promoting the recycle of wastewater.




In FY2014, the KUBOTA Group's water consumption amounted to 4.68 million m<sup>3</sup>, an increase of 4.0% from the previous fiscal year. However, water consumption per unit of sales was reduced by 16.5% owing to successful efforts to conserve water and recycle wastewater, and higher consolidated net sales.

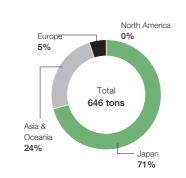

Overseas business sites Business sites in Japar - Water consumption per unit of sales (compared to FY2010)\*

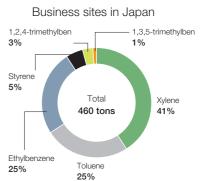
2010

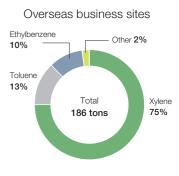
# **Controlling Chemical Substances**

International frameworks are being created to minimize the adverse effects of chemical substances on human health and the environment. The KUBOTA Group appropriately controls chemical substances while striving to meet reduction

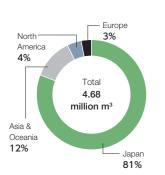




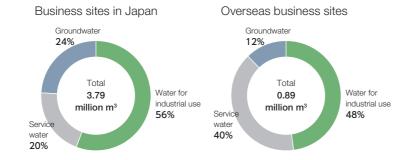


In FY2014, VOC emissions totaled 646 tons, a year-onyear increase of 8.6%. However, VOC emissions per unit of sales were reduced by 12.8%, reflecting better coating efficiency and higher consolidated net sales.


- \*1 Starting in FY2014, VOC emissions at production sites in Japan cover the six substances that account for the highest ratio of emissions by the KUBOTA Group: xylene, toluene, ethylbenzene, styrene, 1.2.4-trimethylbenzene, and 1.3.5-trimethylbenzene, VOC emissions for FY2013 have been retroactively adjusted to reflect this change. VOC emissions for FY2013 and FY2014 do not change much when including
- \*2 VOC emissions per unit of sales = VOC emissions / consolidated net

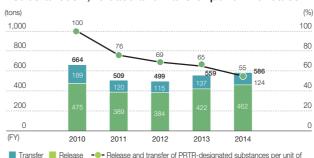
### VOC emissions by region(FY2014 Results)


# VOC emissions by substance (FY2014 Results)







### ■ Total water consumption by region (FY2014 Results)







### Trends in release and transfer of PRTR-designated substances\*1, release and transfer per unit of sales



sales (compared to FY2010)

\*1. Total amount of declarable substances that are handled at an annual volume of 1 ton or

more (0.5 ton or more for Specific Class I designations) at each site (Group production

\*2. Release and transfer of PRTR-designated substances per unit of sales =Total release

Release and transfer of PRTR-designated substances was 586 tons in FY2014, up 4.9% from the previous fiscal year, but reduced by 15.9% on a release and transfer per unit of sales basis.

# Wastewater processing facilities at Kubota Agricultural

Wastewater Recycling with Membrane Treatment Facilities

Machinery (Suzhou) Co., Ltd. process residential and industrial wastewater with the original KUBOTA wastewater recycling system comprising membrane bioreactors, activated carbon filter and reverse osmosis membrane treatment. After being treated, this recycled water is reused in production processes. The facility can process about 180 tons of wastewater per day, 40% of which becomes recycled water. The recycled water is used for cleaning parts before coatings and to supply boilers. Wastewater recycling helps prevent water shortages and pollution of the Yangtze River, where discharged water leads



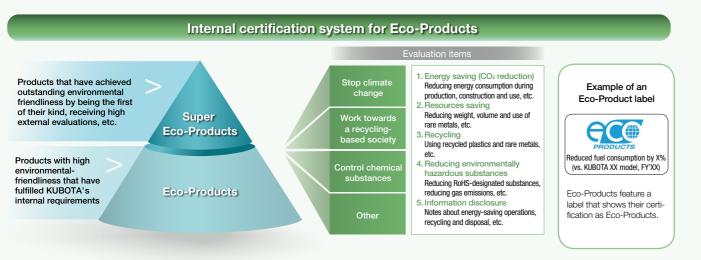
(SUZHOU) Co., Ltd.



Production Engineering Division Kubota Agricultural Machinery (SUZHOU) Co., Ltd. Zhu Zhiqiano

# Groundwater monitoring (FY2014)

and transfer / Consolidated net sales


sites in Japan)

Results of groundwater measurements conducted on the premises of the business sites that used organic chlorine-based compounds in the past are as shown below.

| Business site    | Substance         | Measured groundwater value             | Environmental standard |
|------------------|-------------------|----------------------------------------|------------------------|
| Tsukuba Plant    | Trichloroethylene | Non detected<br>(Less than 0.0001mg/L) | Less than 0.03 mg/L    |
| Utsunomiya Plant | Trichloroethylene | Non detected<br>(Less than 0.001mg/L)  | Less than 0.03 mg/L    |

# **Expanding Lineup of Environmentally Friendly Products**

Based on the Eco-Products Certification System, an in-house certification of the environmental friendliness of products, the Group certified 35 Eco-Products in FY2014. We will continue to focus on reducing environmental impacts throughout the life cycle of its products.



### Products Certified as Eco-Products in FY2014 (excerpt)



### **Energy Conservation in Agriculture from New Technique** for Direct Sowing Iron-Coated Seeds

Although mechanization has reduced overall labor hours, the time that it takes to raise seedlings remains a major obstacle to shortening the time required to plant rice fields. In 2005, the KUBOTA Group began working on a new technique for direct sowing iron-coated seeds with customers of Niigata-Kubota Corporation. In 2010, KUBOTA launched Testumakichan as an implement for multi-purpose rice transplanters for sowing ironcoated seeds with high precision. Thereafter, KUBOTA also developed specialized equipment for sowing iron-coated seeds.

The direct sowing of iron-coated seeds is a technique for sowing seeds coated with iron powder in a cultivated field. Compared with the transplant cultivation method, this technique eliminates the energy expended at rice seedling nurseries and reduces the labor time associated with raising seedlings and transplanting these seedlings to fields. The iron coating is less harmful than conventional coatings (oxygen generating agents)

> and allows work volume to be leveled out because the ironcoated seeds can be stored over long periods. The direct sowing of iron-coated seeds substantially reduces man hours by allowing work to be

sowing of spaced seeds, fertilization, herbicide application and soil grooving. It is possible to reduce man hours per 10 ares by roughly 60% and production costs by about 36%.

simultaneously and at

high speed on the

performed

To encourage the widespread adoption of direct sowing of iron-coated seeds, it is necessary to improve performance and keep prices low for farmers. The six-row direct seeder for ironcoated rice seeds launched in 2013 features a new and improved layout and lower costs.

Rice Transplanters Technology

Division, KUBOTA Corporation

(From right) Team leader Kunimitsu

Taro Nakamura

The KUBOTA Group has also provided direct seeder for iron-coated rice seeds as reconstruction assistance for customers that lost their seedling nurseries in the Great East Japan Earthquake.

To promote the adoption of direct sowing of iron-coated seeds even further, KUBOTA is developing machinery tailored to customer needs in our aim of contributing to the realization of labor-saving, low-cost agriculture and larger-

\* Sources: Man hours and production costs for rice transplantation based on 2009 Niigata Agriculture, Forestry and Fisheries Annual Statistics. Man hours and production costs for the direct sowing of iron-coated seeds based on 2009 National Agricultural Systemization Research Association



Direct seeder for iron-coated rice seeds (WELSTAR WORLD WP60D-TC)

### Palm Oil Mill Effluent Processing Helps Prevent Global Warming and Water Pollution

Malaysia and Indonesia have many palm oil production plants, and post-extraction effluent used to be dumped into open lagoons. However, this mill effluent released methane (a greenhouse gas) into the atmosphere and polluted neighboring water resources through runoff.

KUBOTA was able to realize the following three outcomes by introducing water treatment technologies that use our membranes and membrane-type methane fermentation technologies it accumulated processing sewage and food waste in Japan.

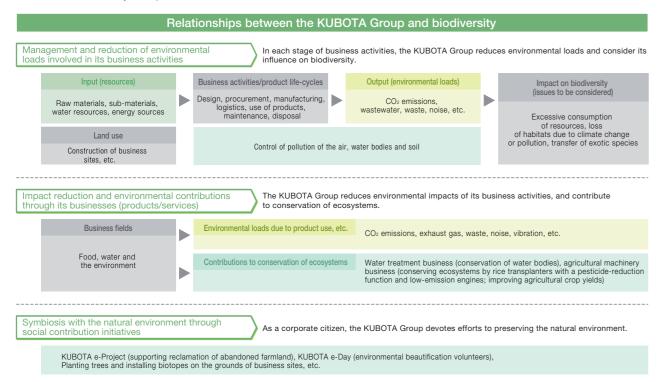
- · Zero emissions of methane gas that had been released into the atmosphere
- · Biogas generated by the mill effluent can be reliably extracted in high concentration and reused as fuel (\* Biogas fuel is a form of renewable energy derived from plants.)
- After biogas is collected, the mill effluent is processed to stringent wastewater standards



First palm oil mill effluent processing facility in Malaysia (for BBC Biogas) External view of membrane-type methane fermentation facility

The first mill effluent processing facility installed in Malaysia has the capacity to recover 26 thousand cubic meters of biogas per day, which is used as fuel at an adjacent plant. This is equivalent to 5.7

Biogas PT Water & Environment Business Promotion Headquarters **KUBOTA** Corporation


million m<sup>3</sup> of natural gas fuel annually, cutting CO<sub>2</sub>equivalent emissions by 85 thousand tons annually.

As this was our first project developed overseas on a fairly large scale, we had some problems that were not encountered with the prototype in Japan, so it was a relief when construction on the facility was completed and safely handed over to the customer in March 2014.

The KUBOTA Group will continue to help solve environmental issues in Southeast Asia by aiming to expand the use of palm oil mill effluent processing facilities. In addition to palm oil mill effluent, we aim to find solutions to other environmental problems, such as growing demand for water and water pollution, in the upstream and downstream water treatment business.

# Conservation of Biodiversity

Conservation of biodiversity is set as one of the targets for the KUBOTA Group's "Eco-First Commitment." In its business activities and social contribution initiatives, the Group endeavoring to ensure that care is taken to conserve biodiversity and protect the natural environment.



### **Action Report**

### **KUBOTA Hanshin Plant**

# Participation in Amagasaki 21st Century Afforestation Project

At the Hanshin Plant, we participate in the Amagasaki 21st Century Afforestation Project\* by growing tree saplings at the plant for the prefecture. The tree saplings tended to by our employees grew bigger and bigger, and in early March 2014, they were transplanted to the main pasture of Amagasaki forest near the plant by employees of the plant and by representatives of the Amagasaki Port Administration Office of Hyogo Prefecture. We have received new tree saplings to raise and plan to transplant them next spring. We will continue activities like this that leave a good impression on our customers and communities.



\* Hyogo Prefecture started this public-private project in March 2002 with the objective of fostering communities in harmony with the environment by creating water resources and abundant greenery along the Amagasaki waterfront area. In the industrial area of Amagasaki, project participants are planting trees that will become a forest 100 years from now. The project aims to add greenery to industrial sites and surrounding areas, promote the use of canals, and children's environmental education.

### P.T. Kubota Indonesia

### Tree Planting to Commemorate 40th Anniversary

To commemorate its 40th anniversary in FY2014, P.T. Kubota Indonesia held a joint tree planting event with students in the region. On May 16, a total of 200 employees and students from Diponegoro University who are studying environmental engineering worked together to plant 1,972 mangrove trees to reflect the year that Kubota Indonesia was founded, along the Morosari coastline of Demak city.

On June 21, a total of 200 employees and students from Semarang State University planted 1,972 tanjong trees in a tree planting event held on the slopes of Mt. Ledek near Semarang City. P.T. Kubota Indonesia will continue to contribute to the preservation of the natural environment in the region.



# **Environmental Management**

The KUBOTA Group aims to enhance its risk management activities and strengthen our environmental management structure, including at overseas business sites.

# Compliance with Environmental Laws and Regulations

To ensure compliance with environmental laws, the KUBOTA Group has set and thoroughly manages its own control values at each of its bases for exhaust gas, wastewater, noise, vibration and other variables that are

stricter than the relevant laws and regulations.

Environmental audits conducted in FY2014 did not reveal any serious violations of environmental laws and regulations at Group companies.

### **Environmental Auditing**

Each year environmental audits are conducted by the KUBOTA Environmental Protection Department, based on the internal control system of the KUBOTA Group.

Audits in FY2014 were conducted by means of paper audits and field audits with factors that have the potential to cause environmental accidents listed as priority checklist items, focusing on production sites, service sites, offices and construction departments in Japan as well as overseas production sites.

Also, at production sites in Japan and overseas, in addition to environmental audits conducted by the Environmental Protection Department, internal environmental audits are also implemented by the staff of each site with the aim of raising the level of environmental management.



Audit of overseas production site SIAM KUBOTA Technology Co., Ltd.

■ FY2014 Environmental audit implementation status [Number of subject sites and departments] 201 sites and departments

[Number of audit items]

99 items (for production sites in Japan) [Audit details]

- Water & Air quality management
- Noise & Vibration management
- Waste material & Chemical substance management
- Climate change prevention
- Response to abnormalities and emergencies
- Environmental management system
- Reduction of environmental load



Audit of business site in Japan Keiyo Plant (Funabashi), KUBOTA Corporation

# Drills for responding to abnormal and emergency situations

The KUBOTA Group is making efforts to identify and minimize the environmental risks associated with its business activities. It carries out regular training based on



Drainage outlet blockage training KUBOTA Vending Services Co., Ltd.

the procedures established to respond to specific risks at each site to mitigate the impact on the ambient environment in case of an environmental accident.



Effluent recovery training Shinyodogawa Environmental Plant Center, KUBOTA Corporation

# **Environmental Education**

The KUBOTA Group provides environmental training and education to our employees around the world. The education program for employees consists of rank-based training, professional training, and general training. KUBOTA assists external group's environmental education programs.

### Results of environmental education in FY2014

| Classification                                | Course title                                                                    | Frequency | No. of participants | Course descriptions                                                                                        |
|-----------------------------------------------|---------------------------------------------------------------------------------|-----------|---------------------|------------------------------------------------------------------------------------------------------------|
|                                               | Training for new recruits                                                       | 2         | 178                 | Environmental issues and KUBOTA's environmental conservation activities                                    |
|                                               | Training for employees promoted to managerial positions                         | 2         | 104                 | The KUBOTA Group's environmental management                                                                |
| Education by employee-level                   | Training for newly appointed foremen                                            | 3         | 22                  | KUBOTA's environmental management and efforts as foremen                                                   |
|                                               | Training for newly appointed supervisors                                        | 1         | 44                  | KUBOTA's environmental management and efforts as supervisors                                               |
|                                               | CSR training (Employees of "creative" personnel who have worked for nine years) | 2         | 76                  | Environmental issues and environmental risk management                                                     |
|                                               | Basics of environmental management education                                    | 1         | 17                  | Basic knowledge of legal systems, environmental risk, and environmental conservation                       |
|                                               | Pollution prevention technology education                                       | 1         | 16                  | Pollution control technology and pollution control laws                                                    |
| Professional                                  | Energy saving technology education                                              | 1         | 6                   | Energy saving technology, energy saving laws                                                               |
| education                                     | Waste management education                                                      | 2         | 45                  | Waste Management and Public Cleansing Law, practical training in consignment contracts and manifests, etc. |
|                                               | New waste management system training                                            | 12        | 59                  | Waste management using ICT systems                                                                         |
|                                               | Education to train ISO 14001 environmental auditors                             | 2         | 30                  | The ISO 14001 standard, environment-related laws, audit techniques                                         |
| Companyal American                            | Overseas production sites<br>Environmental education                            | 15        | 156                 | The KUBOTA Group's environmental management and medium-term environmental conservation targets             |
| General training                              | Business sites in Japan<br>Environmental education                              | 1         | 28                  | The KUBOTA Group's environmental management and environmental risk management                              |
|                                               | Total                                                                           | 45        | 781                 |                                                                                                            |
|                                               |                                                                                 |           |                     |                                                                                                            |
| Support to education in outside organizations | Internship program with Utsunomiya Hakuyo<br>High School                        | 1         | 4                   | KUBOTA's environmental conservation activities and efforts at Utsunomiya Plant                             |



Environmental education (SIAM KUBOTA Corporation Co., Ltd.)



Waste management education



### SIAM KUBOTA Metal Technology

Month for the Environment activities are held in June every year. This year, as a part of environmental education, employees visited regional elementary and junior high schools, cleaned areas around the schools, and taught students how to separate and reduce trash. A total of 260 people participated, creating an opportunity to interact with local children in Thailand and think about the environment.





### **KUBOTA Engine (Thailand)**

In July, CSR and Environment Day was held. Around 50 employees including the plant manager and 20 locals participated, visiting local town schools to plant trees and clean the area. We spent valuable time with local villagers, awarded scholarships, and donated sporting goods to children.





# Trends in Major Environmental Indicators (Trends in the last five year)

### Indicators listed on pages 45 and 46

|        | Environmental indicators         |                                                        |                                 | Unit                                            | FY2010                    | FY2011  | FY2012  | FY2013  | FY2014  |         |
|--------|----------------------------------|--------------------------------------------------------|---------------------------------|-------------------------------------------------|---------------------------|---------|---------|---------|---------|---------|
|        | Total energy input <sup>*3</sup> |                                                        |                                 | TJ                                              | 9,195                     | 9,235   | 9,646   | 11,320  | 12,150  |         |
|        |                                  |                                                        | Fossil fuel*3                   |                                                 | TJ                        | 3,695   | 3,535   | 3,726   | 4,370   | 4,660   |
|        |                                  |                                                        | Purchased ele                   | ectricity                                       | MWh                       | 503,400 | 523,490 | 543,100 | 642,400 | 690,600 |
|        |                                  |                                                        | Transportation                  | n fuel (business sites in Japan)                | TJ                        | 561     | 564     | 587     | 641     | 695     |
|        |                                  | Water consur                                           | nption                          |                                                 | million m <sup>3</sup>    | 4.66    | 4.23    | 4.45    | 4.50    | 4.68    |
| INI    | PUT                              |                                                        |                                 | Overseas business sites included in the above   | million m <sup>3</sup>    | 0.4     | 0.44    | 0.52    | 0.83    | 0.89    |
|        |                                  |                                                        | Service water                   |                                                 | million m <sup>3</sup>    | 0.93    | 0.86    | 0.87    | 1.03    | 1.10    |
|        |                                  |                                                        | Water for indu                  | ustrial use                                     | million m <sup>3</sup>    | 2.69    | 2.36    | 2.56    | 2.46    | 2.56    |
|        |                                  |                                                        | Groundwater                     |                                                 | million m <sup>3</sup>    | 1.04    | 1.01    | 1.02    | 1.01    | 1.02    |
|        |                                  | Amount of PF<br>(business site                         | RTR-designate<br>s in Japan)    | d substances handled                            | tons                      | 5,507   | 5,277   | 5,321   | 5,667   | 5,839   |
|        |                                  | Amount of ch<br>(overseas bus                          | emical substar<br>siness sites) | nces handled                                    | tons                      | _       | 2,667   | 4,488   | 4,138   | 5,623   |
|        |                                  | CO <sub>2</sub> emission                               | s*3                             |                                                 | kilotons CO <sub>2e</sub> | 483     | 451     | 471     | 585     | 663     |
|        |                                  |                                                        |                                 | Overseas business sites included in the above 3 | kilotons CO <sub>2e</sub> | 69      | 76      | 93      | 135     | 172     |
|        | Atmospheric discharge            |                                                        | Energy source                   | es <sup>*3</sup>                                | kilotons CO <sub>2e</sub> | 475     | 445     | 465     | 579     | 657     |
|        |                                  |                                                        | Other than the                  | e above                                         | kilotons CO <sub>2e</sub> | 8       | 6       | 6       | 6       | 6       |
|        |                                  | Distribution CO <sub>2</sub> (business sites in Japan) |                                 | kilotons CO <sub>2e</sub>                       | 39                        | 39      | 40      | 44      | 48      |         |
|        |                                  | SOx emissions*1                                        |                                 | tons                                            | 3.8                       | 5.2     | 2.9     | 6.6     | 17.6    |         |
|        |                                  | NOx emission                                           | ns*1                            |                                                 | tons                      | 49.5    | 66.1    | 61.7    | 64.3    | 79.6    |
|        |                                  | Soot and dus                                           | t emissions*1                   |                                                 | tons                      | 3.8     | 5.5     | 6.4     | 5.7     | 9.2     |
|        |                                  | Amount of PF<br>Japan)                                 | RTR-designate                   | d substances released (business sites in        | tons                      | 475     | 389     | 384     | 422     | 462     |
|        |                                  |                                                        |                                 | VOC (included in the above)*4                   | tons                      | 475     | 389     | 384     | 419     | 460     |
|        |                                  | Amount of ch                                           | emical substar                  | nces released (overseas business sites)         | tons                      |         | 81      | 119     | 211     | 230     |
|        |                                  |                                                        |                                 | VOC (included in the above)                     | tons                      | _       | _       | 119     | 175     | 186     |
| OUTPUT |                                  |                                                        | Wastewater of                   | lischarge                                       | million m <sup>3</sup>    | 3.86    | 3.78    | 3.82    | 3.48    | 3.82    |
|        |                                  |                                                        | COD*2 (busine                   | ess sites in Japan)                             | tons                      | 9.5     | 10.6    | 11.9    | 10.4    | 10.9    |
|        |                                  | Public water                                           | Nitrogen disc<br>(business site | narge <sup>*2</sup><br>s in Japan)              | tons                      | 9.7     | 9.5     | 10.2    | 9.7     | 9.1     |
|        | Water system discharge           | areas                                                  | Phosphorous<br>(business site   | discharge <sup>*2</sup><br>s in Japan)          | tons                      | 0.25    | 0.35    | 0.29    | 0.3     | 0.35    |
|        |                                  |                                                        | Amount of PF<br>(business site  | RTR-designated substances released s in Japan)  | kg                        | 33      | 35      | 40      | 9       | 8.4     |
|        |                                  |                                                        | Wastewater o                    | lischarge                                       | million m <sup>3</sup>    | 0.99    | 0.94    | 1.01    | 1.34    | 1.23    |
|        |                                  | Sewage lines                                           | Amount of PF<br>(business site  | RTR-designated substances released s in Japan)  | kg                        | 20      | 21      | 20      | 20      | 21      |
|        |                                  | Amount of wa                                           | aste discharge                  |                                                 | kilotons                  | 74.3    | 70      | 78.2    | 89.7    | 98.2    |
|        | Waste                            |                                                        |                                 | Overseas business sites included in the above   | kilotons                  | 9.9     | 10.2    | 14.5    | 25.4    | 32.6    |
|        | vvasie                           |                                                        | Landfill waste                  |                                                 | kilotons                  | 3.9     | 4.3     | 4.1     | 7.2     | 13.1    |
|        |                                  | Amount of co                                           |                                 | ste, etc. discharge                             | kilotons                  | 21.5    | 18.9    | 32.7    | 31.8    | 23.8    |

- \*1 Data for overseas business sites is included from FY2011 onwards. \*2 Data for total discharge from business sites subject to total emission control.
- \*3 Figures of fossil fuel and energy sources from FY2010 to FY2013 were revised to improve accuracy.

  \*4 As shown in \*1 of the graph of VOC emissions and emissions per unit of sales on page 52.

# Eco-efficiency D



- -O-CO2 -Waste -A-Chemical substances (PRTR-designated substances)
- Eco-efficiency for CO2 = Consolidated net sales (million¥) / CO2 emission (tons CO2e)
- Eco-efficiency for waste = Consolidated net sales (million\*) / Waste discharge (hundred kg)
   Eco-efficiency for chemical substances =Consolidated net sales (million\*) / The amount of PRTR-designated substances released and transferred (kg) (business sites in Japan)

Eco-efficiency improved in all three categories comprising CO<sub>2</sub> emissions, waste emissions, and chemical substances. The KUBOTA Group will step up efforts at environmental conservation to continue improving ecoefficiency.

How to read the graph

The improvement of the figures means that the sales per unit of environmental load have increased, which is considered to indicate higher eco-efficiency.

# Status of Environmental Management System Certification Acquisition

The KUBOTA Group's production sites are preparing to acquire external certification for their environmental management systems. In FY2014, two production sites in China obtained ISO 14001 certification.

### [I] ISO 14001 Certification

### KUBOTA in Japan

| No | Name                                                                          | Other included organizations and subsidiaries                                                                                             | Main business                                                                                                                                               | Inspecting/<br>Certifying<br>organ | Date of certification |
|----|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------|
| 1  | Tsukuba Plant                                                                 | Eastern Main Parts Center     KUBOTA F.I.M. Service Ltd. KS     Tsukuba Training Center     Kanto Kubota Precision Machinery     Co.,Ltd. | Engines, tractors, etc.                                                                                                                                     | LRQA                               | November 28, 1997     |
| 2  | Keiyo Plant                                                                   | Distribution Center                                                                                                                       | Ductile iron pipes, spiral welded steel pipes                                                                                                               | LRQA                               | July 16, 1998         |
| 3  | Ryugasaki Plant                                                               | KUBOTA Vending Service Co., Ltd.<br>Ryugasaki Plant     KUBOTA Kanto Vender Center Inc.<br>Ryugasaki Plant                                | Vending machines                                                                                                                                            | DNV                                | November 13, 1998     |
| 4  | Hanshin Plant                                                                 | Marushima Factory                                                                                                                         | Ductile iron pipes, rolls, potassium titanate, KUBOTA TXAX products                                                                                         | LRQA                               | March 5, 1999         |
| 5  | Kyuhoji Business Center                                                       | KUBOTA Environmental Service Co.,<br>Ltd     KUBOTA Membrane Corp.     KUBOTA Keiso Corp.                                                 | Measuring instruments, measuring systems, CAD systems, rice-milling products, waste shredder systems, submerged membranes, and mold temperature controllers | DNV                                | March 19, 1999        |
| 6  | Hirakata Plant                                                                |                                                                                                                                           | Valves, cast steel, new ceramic materials, and construction machinery                                                                                       | LRQA                               | September 17, 1999    |
| 7  | Okajima Business Center                                                       |                                                                                                                                           | Industrial cast iron products, drainage pipes, and other cast iron products                                                                                 | JICQA                              | December 22, 1999     |
| 8  | Sakai Plant/Sakai Rinkai Plant                                                |                                                                                                                                           | Engines, tractors, small-size construction machinery, etc.                                                                                                  | LRQA                               | March 10, 2000        |
| 9  | Shiga Plant                                                                   |                                                                                                                                           | FRP products                                                                                                                                                | JUSE                               | May 18, 2000          |
| 10 | Water Engineering & Solution<br>Business Unit                                 | Shin-yodogawa Environmental Plant<br>Center                                                                                               | Sewage & sludge water purification, waste water treatment facilities                                                                                        | LRQA                               | July 14, 2000         |
| 11 | Pumps Business Unit                                                           | KUBOTA Kiko Ltd.                                                                                                                          | Sewage & water purification plants, pumps and pump stations                                                                                                 | LRQA                               | July 14, 2000         |
| 12 | Water Engineering & Solution<br>Business Unit (membrane filtration<br>system) |                                                                                                                                           | Filtration membrane unit                                                                                                                                    | LRQA                               | July 14, 2000         |
| 13 | Utsunomiya Plant                                                              | KUBOTA F.I.M. Service Ltd. KS     Utsunomiva Training Center                                                                              | Rice transplanters and combine harvesters                                                                                                                   | LRQA                               | December 8, 2000      |

### KUBOTA Group: Companies in Japan

| No | Name                                      | Other included organizations and subsidiaries                            | Main business                                                                                                                                                 | Inspecting/<br>Certifying<br>organ | Date of certification                                    |
|----|-------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------|
| 1  | Nippon Plastic Industry Co., Ltd.         | Head office and plant, Mino Plant                                        | Plastic pipes, plastic sheets, etc.                                                                                                                           | JŠA                                | October 27, 2000                                         |
| 2  | KUBOTA Construction Co., Ltd.             |                                                                          | Design and construction of civil engineering structures and buildings                                                                                         | JQA                                | December 22, 2000                                        |
| 3  | KUBOTA Environmental Service<br>Co., Ltd. |                                                                          | Installation, maintenance and management of environmental systems for service water, sewage, landfill disposal, raw waste and waste plants, etc. and services | MSA                                | November 20, 2002                                        |
| 4  | KUBOTA-C.I. Co., Ltd.                     | Tochigi Plant Sakai Plant Odawara Plant Kyushu KUBOTA Chemical Co., Ltd. | Plastic pipes and couplings                                                                                                                                   | JUSE                               | March 27, 2003<br>(integrated<br>authentication in 2011) |
| 5  | KUBOTA Air Conditioner Co., Ltd.          | Tochigi Plant                                                            | Central air conditioning systems                                                                                                                              | JQA                                | August 27, 2004                                          |
| 6  | KUBOTA Precision Machinery Co., Ltd.      |                                                                          | Hydraulic valves, hydraulic cylinders, transmissions, hydraulic pumps, hydraulic motors, etc.                                                                 | LRQA                               | March 17, 2007                                           |
| 7  | KUBOTA KASUI Corporation                  |                                                                          | Design, construction and maintenance management of environmental conservation facilities                                                                      | BCJ                                | February 1, 2010                                         |

### KUBOTA Group: Overseas companies

| No | Name                                                       | Main business                                                         | Inspecting/<br>Certifying<br>organ | Date of certification |
|----|------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------|-----------------------|
| 1  | SIAM KUBOTA Corporation Co., Ltd. (Navanakorn, Thailand)   | Small diesel engines and agricultural machinery                       | MASCI                              | February 28, 2003     |
|    | P.T. Kubota Indonesia(Indonesia)                           | Diesel engines and agricultural machinery                             | LRQA                               | February 10, 2006     |
| 3  | Kubota Materials Canada Corporation (Canada)               | Cast steel products                                                   | SGS (U.S.)                         | June 15, 2006         |
| 4  | P.T.Metec Semarang (Indonesia)                             | Vending Machines                                                      | TÜV                                | March 16, 2011        |
| 5  | Kubota Precision Machinery (Thailand) Co.,Ltd. (Thailand)  | Equipment for tractors                                                | SGS                                | August 27, 2012       |
| 6  | Kubota Manufacturing of America Corporation (U.S.)         | Small-sized tractors, mowers, Utility Vehicles and tractor implements | BSI                                | September 20, 2012    |
| 7  | SIAM KUBOTA Corporation Co., Ltd. (Amata Nakorn, Thailand) | Tractors and combine harvesters                                       | BV                                 | September 27, 2012    |
| 8  | Kubota Industrial Equipment Corporation (U.S.)             | Tractor implements and tractors                                       | DEKRA                              | November 28, 2012     |
| 9  | KUBOTA SANLIAN PUMP (ANHUI) Co., Ltd. (China)              | Pumps                                                                 | CCSC                               | May 29, 2013          |
| 10 | Kubota Agricultural Machinery (SUZHOU) Co., Ltd. (China)   | Combine harvesters, rice transplanters and tractors                   | SGS                                | November 13, 2013     |

: Management System Certification Institute (Thailand)

: SGS United Kingdom Limited (U.K.) : BSI Assurance UK I imited (U.K.)

SGS (U.S.): Systems & Services Certification, a Division of SGS North America Inc.(U.S.) TÜV : TÜV Rheinland Cert GmbH (Germany)

: Bureau Veritas Certification Holding SAS—UK Branch (U.K.) : DEKRA Certification, Inc. (U.S.)

: China Classification Society Certification Company (China)

: Llovd's Register Quality Assurance Limited (U.K.)

: DNV Certification B.V. (Netherlands) : JIC Quality Assurance Ltd. (Japan)

: Union of Japanese Scientists and Engineers ISO Center

Japanese Standards Association

: Japan Quality Assurance Organization : Management System Assessment Center (Japan) : Japan Chemical Quality Assurance Ltd. : The Building Center of Japan

[II] EMAS certification

### KUBOTA Group: Overseas companies

| No | Name                               | Main business          | Inspecting/<br>Certifying<br>organ | Date of certification |
|----|------------------------------------|------------------------|------------------------------------|-----------------------|
| 1  | Kubota Baumaschinen GmbH (Germany) | Construction Machinery | IHK                                | January 3, 2013       |
|    |                                    |                        |                                    |                       |

### IHK: Industrie- und Handelskammer für die Pfalz (Germany)

# Information related to Controlling Chemical Substance

### FY2014 results of PRTR reporting (production sites in Japan)

| Number                           |                                            | Releases   |                    |      |                   | Trans    | sfers                 |
|----------------------------------|--------------------------------------------|------------|--------------------|------|-------------------|----------|-----------------------|
| specified<br>in Cabinet<br>Order | Chemical substance                         | Atmosphere | Public water areas | Soil | On-site landfills | Sewerage | Transfers to off-site |
| 1                                | Water-soluble zinc compounds               | 0.0        | 8.4                | 0.0  | 0.0               | 21       | 1,257                 |
| 53                               | Ethylbenzene                               | 113,976    | 0.0                | 0.0  | 0.0               | 0.0      | 24,257                |
| 71                               | Ferric chloride                            | 0.0        | 0.0                | 0.0  | 0.0               | 0.0      | 0.0                   |
| 80                               | Xylene                                     | 190,723    | 0.0                | 0.0  | 0.0               | 0.0      | 36,590                |
| 87                               | Chromium and chromium (III) compounds      | 0.0        | 0.0                | 0.0  | 0.0               | 0.0      | 3,601                 |
| 132                              | Cobalt and its compounds                   | 0.0        | 0.0                | 0.0  | 0.0               | 0.0      | 3.7                   |
| 188                              | N,N-Dicyclohexylamine                      | 0.0        | 0.0                | 0.0  | 0.0               | 0.0      | 1,139                 |
| 239                              | Organic tin compounds                      | 0.0        | 0.0                | 0.0  | 0.0               | 0.0      | 14                    |
| 240                              | Styrene                                    | 25,442     | 0.0                | 0.0  | 0.0               | 0.0      | 0.0                   |
| 243                              | Dioxins                                    | 0.0094     | 0.0                | 0.0  | 0.0               | 0.0      | 0.82                  |
| 277                              | Triethylamine                              | 0.0        | 0.0                | 0.0  | 0.0               | 0.0      | 0.0                   |
| 296                              | 1, 2, 4-trimethylbenzene                   | 12,796     | 0.0                | 0.0  | 0.0               | 0.0      | 2,566                 |
| 297                              | 1, 3, 5-trimethylbenzene                   | 2,239      | 0.0                | 0.0  | 0.0               | 0.0      | 8.0                   |
| 300                              | Toluene                                    | 114,987    | 0.0                | 0.0  | 0.0               | 0.0      | 20,739                |
| 302                              | Naphthalene                                | 2,031      | 0.0                | 0.0  | 0.0               | 0.0      | 0.0                   |
| 305                              | Lead compounds                             | 6.6        | 0.0                | 0.0  | 0.0               | 0.0      | 6,941                 |
| 308                              | Nickel                                     | 1.8        | 0.0                | 0.0  | 0.0               | 0.0      | 522                   |
| 309                              | Nickel compounds                           | 0.0        | 0.0                | 0.0  | 0.0               | 0.0      | 508                   |
| 349                              | Phenol                                     | 0.0        | 0.0                | 0.0  | 0.0               | 0.0      | 0.0                   |
| 354                              | Di-n-butyl phthalate                       | 0.0        | 0.0                | 0.0  | 0.0               | 0.0      | 169                   |
| 392                              | n-Hexane                                   | 0.0        | 0.0                | 0.0  | 0.0               | 0.0      | 0.0                   |
| 400                              | Benzene                                    | 1.7        | 0.0                | 0.0  | 0.0               | 0.0      | 0.0                   |
| 405                              | Boron compounds                            | 0.0        | 0.0                | 0.0  | 0.0               | 0.0      | 1,859                 |
| 411                              | Formaldehyde                               | 179        | 0.0                | 0.0  | 0.0               | 0.0      | 0.0                   |
| 412                              | Manganese and its compounds                | 0.0        | 0.0                | 0.0  | 0.0               | 0.0      | 23,565                |
| 448                              | Methylenebis (4, 1-phenylene) diisocyanate | 0.0        | 0.0                | 0.0  | 0.0               | 0.0      | 0.0                   |
| 453                              | Molybdenum and its compounds               | 0.0        | 0.0                | 0.0  | 0.0               | 0.0      | 0.0                   |
|                                  | Total                                      | 462,384    | 8.4                | 0.0  | 0.0               | 21       | 123,737               |

<sup>\*</sup> Total of substances with annual handling volume of one ton or more (0.5 ton or more for Specific Class I Designations) at each business site.

### Green Procurement

For the purpose of providing products that are friendly to the global and local environment, the KUBOTA Group is seeking to procure products with reduced environmental impacts from eco-friendly suppliers.

In order to effectively promote eco-friendly sourcing activities, the Group presents its policy for green procurement in the KUBOTA Group's Green Procurement Guidelines, to request the understanding and cooperation of suppliers.



Please refer to http://www.kubota-global.net/environment/procure.html

for details regarding the KUBOTA Group Green Procurement Guidelines.



KUBOTA Group's Green Procurement Guidelines and Appendix

### Reduction of Chemical Substances contained in Products

The KUBOTA Group has set rules for identifying and properly managing chemical substances in products in order to comply with REACH regulations\*1 in Europe and other chemical substance regulations. Since FY2011, chemical substances in products have been classified as one of the three following categories and managed appropriately. With cooperation from our suppliers, we investigate chemical substances in products on a global basis.

- Control levels -
- 1. Substances to be Prohibited; Should not be contained in
- 2. Substances to be Restricted; Should not be contained in products under certain conditions and applications
- 3. Substances to be Controlled; Their presence in products should be recognized
- \*1 REACH Regulation: EU's Regulation for Registration, Evaluation, Authorisation and

<sup>\*</sup> Unit: kg/year (Dioxins: mg-TEQ/year)

<sup>:</sup> Volatile Organic Compound (VOC) : Six VOC substances targeted for reduction in FY2016 Medium-Term Environmental Conservation Targets

# **Environmental Accounting**

The KUBOTA Group performs environmental accounting and publicizes data about the cost of investments in environmental conservation and the economic and environmental benefits of these investments.

### Environmental conservation costs

(Yen in millions)

|                                        |                                                                                                                 |            |          |            | 101111111111110110) |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------|----------|------------|---------------------|
| Classifications                        | Main activities                                                                                                 | FY2        | 013      | FY2        | 014                 |
| Classifications                        | IVIAII I ACTIVILIES                                                                                             | Investment | Expenses | Investment | Expenses            |
| Within the business area cost          |                                                                                                                 | 722        | 1,424    | 679        | 1,353               |
| Local environmental conservation cost  | Prevention of air and water pollution, soil contamination, noise, vibration, etc.                               | 160        | 393      | 377        | 341                 |
| Global environmental conservation cost | Prevention of climate change                                                                                    | 453        | 217      | 301        | 233                 |
| Resource recycling cost                | Minimizing waste production, reducing quantity of waste, and recycling                                          | 109        | 814      | 0.5        | 779                 |
| Upstream and downstream costs          | Collection of used products and commercialization of recycled products                                          | 0          | 24       | 0          | 30                  |
| Management activities cost             | Environmental management personnel, ISO maintenance and implementation, environmental information dissemination | 4          | 1,225    | 2          | 1,326               |
| R&D cost                               | R&D for reducing of product environmental load and developing environment conservation equipment                | 339        | 5,262    | 288        | 6,394               |
| Social activities cost                 | Local cleanup activities and membership fees and contributions to environmental groups, etc.                    | 0          | 1        | 0          | 1                   |
| Environmental remediation cost         | Contributions and impositions, etc.                                                                             | 0          | 200      | 0          | 199                 |
| Total                                  |                                                                                                                 | 1,065      | 8,136    | 969        | 9,303               |
| Total capital investment (including    | land) for the corresponding period (consolidated data)                                                          |            |          |            | 51,200              |
| Total R&D costs for the correspor      |                                                                                                                 |            |          |            | 35,600              |

### Environmental conservation effects

| Effects                                                       | Items                                                                                   | FY2013 | FY2014 |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------|--------|
| Environmental effect related to resources input into business | Energy consumption (Except for transportation fuel) [units of heat; in terajoules (TJ)] | 7,660  | 7,870  |
| activities                                                    | Water consumption (million m <sup>3</sup> )                                             | 3.67   | 3.79   |
|                                                               | CO <sub>2</sub> emissions (Energy related) (kilotons CO <sub>2</sub> )                  | 444    | 485    |
|                                                               | SOx emissions (tons)                                                                    | 4.1    | 16.2   |
| Environmental effect related to waste                         | NOx emissions (tons)                                                                    | 58.0   | 64.7   |
| or environmental impact originating                           | Soot and dust emissions (tons)                                                          | 3.5    | 3.4    |
| from business activities                                      | Releases and transfers of PRTR-designated substances (tons)                             | 559    | 586    |
|                                                               | Waste discharge (kilotons)                                                              | 64.3   | 65.6   |
|                                                               | Waste to landfills (kilotons)                                                           | 1.0    | 1.2    |

### Economic effects

(Yen in millions)

| Classifications              | Details Details                                                                                                | Annual effects |
|------------------------------|----------------------------------------------------------------------------------------------------------------|----------------|
| Energy conservation measures | Use alternative fuels for production facilities and switch to more efficient lighting and air handling systems | 139            |
| Zero-emissions measures      | Reduce the amount of industrial waste; promote resource recycling; other                                       | 64             |
| Zero-emissions measures      | Sales of valuable resources                                                                                    | 1,127          |
| Total                        |                                                                                                                | 1,330          |

### <Environmental accounting principles>

- 1) The period covered spans from April 1, 2013 to March 31, 2014.
- 2) The data of business sites in Japan are considered in the calculation.
- 3) Data was calculated referring to the Environmental Accounting Guidelines 2005, published by Japan's Ministry of the Environment.
- 4) "Expenses" includes depreciation costs. Depreciation cost was calculated based on the standards applied to KUBOTA's financial accounting, and assets acquired in and after 1998 were considered in the calculation. "Management activities" and "R&D costs" include personnel expenses "Resource recycling costs" does not include costs incurred during disposal of construction waste at construction sites.
- "R&D costs" represents that which was spent on environmental purposes, calculated on a pro-rata basis.
- 5) "Economic effects" is obtained only by adding up tangible results and does not include estimated effects

# Green Purchasing



2012

Amount spent on green products and the ratio

to total purchasing amount (Business sites in Japan)

■ Amount spent on green products -- Ratio to total purchasing amount

We promote Green Purchasing, the prioritization of procured products that have minimal impact on the environment. In FY2014 the ratio of the amount spent on green products to total purchasing amount was 83.1%.

Starting in FY2014, we reformulated the office supplies subject to Green Purchasing. Toner cartridges and ink cartridges were removed from the calculation of Green Purchasing amounts and ratios. Using the same basis as in FY2013, the amount spent on green products would be ¥84.04 million and the Green Purchasing ratio would be 77.6%

# Receiving Environmental Awards

In FY2014, the KUBOTA Group continued to engage in environmental conservation activities. Some of these environmental activities were recognized with awards from external parties as leading examples of environmental conservation.

### KUBOTA Tsukuba Plant:

Chairman's Incentive Award in 32nd National Competition for Promotion of Greenery at Factories

In November 2013, the Japan Greenery Research and Development Center presented the Tsukuba Plant with the Chairman's Incentive Award for factories with excellent greenery.

The Tsukuba Plant contributes to the promotion of greenery in the region by maintaining about eight hectares of greenery on the premises of the plant and operating environmental facilities. On the premises, there are grass lawns and tree-lined walkways. These beautiful natural environments offer employees a place to rest as well as a space for communication and recreation. Cherry blossom trees grown on the site where an expansion of the No. 2 plant was planned were transplanted to line the walkway that employees take to work. These trees are a symbol of the plant and blossom every spring.



### **KUBOTA Corporation & KUBOTA LOGISTICS CORPORATION**

Minister of Economy, Trade and Industry Award for Green Logistics **Partnership's Leading Business Council** 

In December 2013, KUBOTA Corporation and KUBOTA LOGISTICS CORPORATION were honored with the Japanese Minister of Economy, Trade and Industry(METI) Minister's Award for the Excellent Green Logistics Commendation, sponsored by METI, the Ministry of Land, Infrastructure and Transport, and other entities. The award recognizes the efficient container round use based in inland container terminals for transporting containers, which would be empty during either the loading or backloading process. CO<sub>2</sub> emissions were cut as a result of shortening the distance traveled by the trucks. We also created a model for alleviating chronic congestion on roads around shipping container yards in Tokyo Bay.



KUBOTA Head Office: Mayor's Award for Excellent Waste Reduction Buildings

In November 2013, Osaka City's Environmental Office sponsored the 2013 Excellent Waste Reduction Building Awards at the Abeno-ku Citizens Center in Osaka, Japan. KUBOTA's Head Office Building was awarded the Mayor's Award. Every year, Osaka City conducts on-site inspections of buildings to evaluate the effectiveness of efforts to reduce and recycle waste. Our Head Office building has won the award for more than ten years running, recognized as an

This year, the No. 2 building of the Head Office also received the award, for the fifth year straight. We do our best to reduce waste at our offices.



### P.T. Kubota Indonesia:

**Blue PROPER Award** 

P.T. Kubota Indonesia has received the Blue PROPER Award from the Ministry of Environment of Republic of Indonesia in recognition of its corporate activities over the year beginning in July 2012. The Environmental Performance Rating Program PROPER) is a rating program that Characterized by certain colors operated by the Ministry of the Environment in Indonesia. The PROPER Awards aim to drive companies to comply to environmental regulations and achieve environmental excellence through the integration of sustainable development principles in production and service, the implementation of environmental management systems, 3R (reuse, reduce, recycle) of wastes, energy efficiency, resource conservation, biodiversity protection and conduct ethical business responsibility through community



P.T. Kubota Indonesia received the Blue PROPER Award in recognition of its proper environmental management system that complies with related laws and regulations.

### SIAM KUBOTA Corporation (Amata Nakorn Plant):

**Green Industry Level 3 Award** 

SIAM KUBOTA Corporation (Amata Nakorn Plant) has made concerted efforts to reduce waste and water usage. These efforts were recognized in July 2013 with an award from the government of Thailand as an environmentally friendly, clean plant. Out of five levels, the Green Industry Level 3 Award is given when they run a proper operation of an environmental management system.

In addition to these efforts to reduce waste and water consumption, SIAM KUBOTA Corporation is bolstering efforts to cut emissions of CO2 and VOC with an eye on the Level 5 Award.

In September 2012, SIAM KUBOTA Metal Technology Co., Ltd was recognized by the government of Thailand as an environmentally friendly factory and awarded Level 2 in the Green Industry Project. Going forward, everyone in the company will continue to eagerly work to conserve the environment and pursue a higher rating.



KUBOTA REPORT 2014

2010

# KUBOTA Group Production Sites Data

Data on KUBOTA production sites in Japan (results of FY2014)

| Item                    |                                        | Business site           | Hanshin Plan<br>Maru: | nt (Mukogawa,<br>Ishima) | Hanshin Plan  | t (Amagasaki)      | Keiyo Plant (Funabash | i, Distribution Center) | Keiyo Plant   | (Ichikawa)         | Hirakat       | ta Plant              | Okajima Bus   | siness Center         | Sakai         | Plant              | Sakai Rin     | kai Plant          | Utsunom       | niya Plant         | Tsukub        | a Plant            | Kyuhoji Busir | ness Center *4        | Ryugasak      | ki Plant *4        | Shiga         | Plant                 |
|-------------------------|----------------------------------------|-------------------------|-----------------------|--------------------------|---------------|--------------------|-----------------------|-------------------------|---------------|--------------------|---------------|-----------------------|---------------|-----------------------|---------------|--------------------|---------------|--------------------|---------------|--------------------|---------------|--------------------|---------------|-----------------------|---------------|--------------------|---------------|-----------------------|
| INPUT                   |                                        |                         |                       |                          |               |                    |                       |                         |               |                    |               |                       |               |                       |               |                    |               |                    |               |                    |               |                    |               |                       |               |                    |               |                       |
|                         |                                        | Unit                    | Volume of use         | Heat conversion GJ       | Volume of use | Heat conversion GJ | Volume of use         | Heat<br>conversion GJ   | Volume of use | Heat conversion GJ | Volume of use | Heat<br>conversion GJ | Volume of use | Heat<br>conversion GJ | Volume of use | Heat conversion GJ | Volume of use | Heat<br>conversion GJ | Volume of use | Heat conversion GJ | Volume of use | Heat<br>conversion GJ |
| Energy                  | Fossil fuel                            | Crude oil equivalent kL | 18,092                | 701,259                  | 5,607         | 217,321            | 23,838                | 923,964                 | 100           | 3,878              | 5,444         | 211,027               | 4,842         | 187,692               | 4,100         | 158,928            | 3,014         | 116,818            | 1,444         | 55,955             | 6,306         | 244,404            | 277           | 10,752                | 241           | 9,345              | 575           | 22,293                |
|                         | Purchased electricity                  | MWh                     | 46,235                | 452,454                  | 32,094        | 319,981            | 49,211                | 479,477                 | 5,392         | 53,754             | 44,491        | 435,388               | 38,749        | 376,218               | 35,512        | 346,677            | 16,452        | 160,368            | 6,238         | 61,653             | 44,873        | 437,652            | 2,321         | 22,787                | 3,214         | 32,039             | 2,548         | 25,401                |
|                         | Total                                  | Crude oil equivalent kL | 29,766                | 1,153,713                | 13,862        | 537,301            | 36,209                | 1,403,440               | 1,487         | 57,632             | 16,677        | 646,414               | 14,549        | 563,910               | 13,045        | 505,604            | 7,151         | 277,185            | 3,034         | 117,608            | 17,597        | 682,056            | 865           | 33,540                | 1,068         | 41,384             | 1,231         | 47,694                |
|                         |                                        |                         |                       |                          |               |                    |                       |                         |               |                    |               |                       |               |                       |               |                    |               |                    |               |                    |               |                    |               |                       |               |                    |               |                       |
| Water usage             | е                                      | thousand m <sup>3</sup> | 8-                    | 44                       | 2             | 13                 | 10                    | 17                      | 1:            | 2                  | 17            | 71                    | 7             | '5                    | 1:            | 20                 | 50            | 3                  | 11            | 15                 | 21            | 16                 | 1             | 9                     | 1.            | .2                 | 80            | J                     |
| OUTPUT                  |                                        |                         |                       |                          |               |                    |                       |                         |               |                    |               |                       |               |                       |               |                    |               |                    |               |                    |               |                    |               |                       |               |                    |               |                       |
| CO <sub>2</sub> emissio | n CO2 emissions from<br>energy sources | tons CO2e               | 80,                   | ,064                     | 27,           | 349                | 107,                  | 341                     | 3,0           | 81                 | 33,8          | 808                   | 38,           | 242                   | 27,           | 412                | 15,7          | 755                | 6,5           | 517                | 37,2          | 260                | 1,7           | 782                   | 1,7           | 792                | 2,4           | 21                    |
|                         |                                        |                         |                       |                          |               |                    |                       |                         |               |                    |               |                       |               |                       |               |                    |               |                    |               |                    |               |                    |               |                       |               |                    |               |                       |
| Waste                   | Discharge amount                       | tons                    | 11,                   | ,272                     | 4,9           | 922                | 20,8                  | 328                     | 15            | 51                 | 3,8           | 889                   | 14,           | 501                   | 1,3           | 316                | 61            | 13                 | 45            | 54                 | 2,4           | 167                | 14            | 43                    | 10            | 09                 | 22            | <u>.</u> 0            |
| VVasie                  | Recycling ratio                        | %                       | 99                    | 9.6                      | 99            | 9.9                | 99                    | .9                      | 99            | .9                 | 99            | 9.9                   | 10            | 0.0                   | 99            | 9.8                | 99            | ).7                | 98            | 3.8                | 99            | 9.8                | 99            | 9.5                   | 99            | 9.6                | 98.           | .1                    |
|                         |                                        |                         |                       |                          |               |                    |                       |                         |               |                    |               |                       |               |                       |               |                    |               |                    |               |                    |               |                    |               |                       |               |                    |               |                       |
|                         | Main smoke and soot ge                 | nerating facilities"2   | Melting               | furnaces                 |               | furnaces           | Melting f             |                         |               |                    | Heating       | furnaces              |               | furnaces              |               | urnaces            |               |                    | Boi           |                    | Boil          |                    | ]             |                       | Boil          |                    | Boil          | ers                   |
|                         |                                        | 11-4                    | Control Co            | ntrol Management         | Control Co    | ntrol Management   | Control Con           | trol Manager            |               |                    | Control Cor   | ntrol I               | Control Co    | ntrol Management      | Control Cor   | ntrol Management   |               |                    | Control Cor   | ntrol Manager      | Control Con   | ntrol Management   |               |                       | Control Con   | ntrol Manager      | Control Con   | itrol Management      |

|                                                                                |                                                                      |                                   | Troum grantaboo                                                                            | 21)1191011000                                       | Dolloro                                  | Dolloro                          | Bolloro                                                                            |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------|----------------------------------|------------------------------------------------------------------------------------|
| Unit Control content value                                                     | rement Control Control Value Measurement Control Control value       | Measurement                       | Control content value Measurement Control content Value Measurement Control value Measurem | nt Control content value Measurement                | Control Control Measurement value        | ontrol control value Measurement | Control content value Measurement Control content value Measurement                |
| SOx Total emission control and K-value control m <sup>3</sup> N/h Control 0.22 | Use of town gas with zero Sulfur content Total emission control 22.8 | 2.3  No smoke and soot generating | Use of town gas with zero sulfur content Total emission control 2.859 0.26                 | Total emission 1.477 0 No smoke and soot generating | Use of town gas with zero sulfur content | K-value control 10.3 0.06        | Use of town gas with zero sulfur content  Use of town gas with zero sulfur content |
| NOx Total emission control: m³N/h, Concentration control: ppm control          | Total emission control 2.24 0.187 Total emission control 26.7        | facilities 2.92                   | Total emission control 9.168 0.053 Total emission control 2.4 0.49                         | Total emission control 1.535 0.002 facilities       | Concentration control 150 44             | Concentration control 230 120    | facilities Concentration control 230 47 Concentration control 180 27               |
| Soot and dust Concentration control: g/m³N Concentration control               | 023 Concentration 0.1 0.0011 Concentration control                   | 0.002                             | Concentration control 0.1 0.005 Concentration control 0.05 0.03                            | Concentration control 0.1 0.005                     | Concentration control 0.1 0.001          | Concentration control 0.25 0.01  | Concentration control 0.2 Less than 0.01                                           |

<sup>\*1</sup> Total emission control: Control value (including agreed value) by plant or facilities and the measurement value. K-value control and concentration control: Control value (including agreed value) of major smoke and soot generating facilities and the measurement value (maximum value).
\*2 Smoke and soot generating facilities: Those subject to the laws concerning emissions into the atmosphere.

|         |                                       | Unit                            | Control value | Measurement  | Control value | Measurement | Control value | Measurement  | Control value | Measurement | Control value | Measurement  | Control value | Measurement | Control value | Measurement | Control value | Measurement  | Control value | Measurement | Control value | Measurement  | Control value | Measurement | Control value | Measurement | Control value | Measurement  |
|---------|---------------------------------------|---------------------------------|---------------|--------------|---------------|-------------|---------------|--------------|---------------|-------------|---------------|--------------|---------------|-------------|---------------|-------------|---------------|--------------|---------------|-------------|---------------|--------------|---------------|-------------|---------------|-------------|---------------|--------------|
|         | рН                                    | Minimum value,<br>Maximum value | 5.8-8.6       | 6.8-7.7      | _             | _           | 5.0-9.0       | 6.6-7.4      | 5.0-9.0       | 6.6–7.5     | 5.8-8.6       | 6.8–7.5      | _             | _           | _             | _           | 5.8-8.6       | 5.8-7.6      | 5.8-8.6       | 7.0–7.5     | 5.8-8.6       | 7.4–7.9      | _             | _           | _             | _           | 6.0-8.5       | 7.4–7.8      |
|         | BOD                                   | mg/L                            | 30            | 6            | _             | _           | _             | _            | _             | _           | 25            | 5.9          | _             | _           | _             | _           | 30            | 9.7          | 25            | 15.7        | 20            | 3.6          | _             | _           | _             | _           | 30            | 1.5          |
|         | COD                                   | mg/L                            | 20            | 6            | _             | _           | 20            | 3.5          | 60            | 18.7        | 25            | 10.6         | _             | _           | _             | _           | 30            | 23.2         | _             | _           | 20            | 8.5          | _             | _           | _             | _           | 30            | 2.9          |
| 7       | Nitrogen                              | mg/L                            | 120           | 5.7          | _             | _           | 20            | 4.6          | 70            | 23          | 120           | 11           | _             | _           | _             | _           | 120           | 72.2         | _             | _           | 60            | 11           | _             | _           | _             | _           | 12            | 1            |
| 1 5     | Phosphorus                            | mg/L                            | 16            | 0.2          | _             | _           | 2             | 0.08         | 7             | 2.3         | 16            | 1            | _             | _           | _             | _           | 16            | 10.6         | _             | _           | 8             | 0.8          | _             | _           | _             | _           | 1.2           | Non-detected |
| _   vai | Hexavalent chromium                   | mg/L                            | 0.35          | Non-detected | _             | _           | 0.05          | Non-detected | _             | _           | 0.05          | Non-detected | _             | _           | _             | _           | 0.5           | Non-detected | _             | _           | 0.5           | Non-detected | _             | _           | _             | _           | 0.05          | Non-detected |
| or ar   | Lead                                  | mg/L                            | 0.1           | Non-detected | _             | _           | 0.1           | 0.02         | _             | _           | 0.01          | 0.005        | _             | _           | _             | _           | 0.1           | Non-detected | _             | _           | 0.1           | Non-detected | _             | _           | _             | _           | _             | _            |
| nage    | COD,<br>total emission control        | kg/day                          | 97.44         | 13.3         | _             | _           | 110.5         | 55.4         | 4             | 0.87        | 38            | 2            | _             | _           | _             | _           | 3.3           | 0.87         | _             | _           | _             | _            | _             | _           | _             | _           | _             | _            |
| ω       | Nitrogen,<br>total emission control   | kg/day                          | 40.51         | 13.6         | _             | _           | 114.7         | 20.2         | 2.865         | 0.86        | 38.3          | 2            | _             | _           | _             | _           | 13.2          | 1.6          | _             | _           | _             | _            | _             | _           | _             | _           | _             | _            |
|         | Phosphorus,<br>total emission control | kg/day                          | 1.424         | 0.5          | _             | _           | 11.65         | 0.7          | 0.391         | 0.087       | 4.4           | 0.2          | _             | _           | _             | _           | 1.76          | 0.12         | _             | _           | _             | _            | _             | _           | _             | _           | _             | _            |
| Ve V    | pH                                    | Minimum value,<br>Maximum value | 5.7-8.7       | 7.0-8.4      | 5.7-8.7       | 6.4–7.8     | _             | _            | _             | _           | _             | _            | 5.7-8.7       | 6.7         | 5.7–8.7       | 6.9–7.2     | _             | _            | _             | _           | _             | _            | 5.7-8.7       | 6.8-7.6     | 5–9           | 6.2-7.4     | _             | _            |
| erag    | BOD                                   | mg/L                            | 300           | 140          | 300           | 7           | _             | _            | _             | _           | _             |              | 600           | 29          | 300           | 39          | _             | _            | _             | _           | _             | _            | 300           | 37          | 600           | 68          | _             | _            |
| 96      | COD                                   | mg/L                            | _             | _            | _             | _           | _             | _            | _             | _           | _             | _            | _             | _           | _             | 160         | _             |              | _             | _           | _             | _            | _             | _           | _             | _           | _             |              |
| les     | SS                                    | mg/L                            | 300           | 2            | 300           | 23          | _             | _            | _             | _           | _             |              | 600           | 6           | 300           | 24          | _             |              | _             | _           | _             |              | 300           | 33          | 600           | 35          | _             | _            |

<sup>\*3</sup> Total emission control: Control value (including agreed value) by plant and the measurement value. Concentration control: Control value (including agreed value) by plant and the measurement value).

\*4 Includes Group company data within the same site.

Results of PRTR Reporting (Unit: kg/year)

|                              |                                              |                      |            | neleaset                 | allioniir |                   | II di isiene | u amount                 |
|------------------------------|----------------------------------------------|----------------------|------------|--------------------------|-----------|-------------------|--------------|--------------------------|
| Business site                | Substance name                               | Cabinet<br>Order No. | Atmosphere | Public<br>water<br>areas | Soil      | On-site landfills | Sewerage     | Transfers<br>to off-site |
|                              | Ethylbenzene                                 | 53                   | 6,357      | 0.0                      | 0.0       | 0.0               | 0.0          | 61                       |
|                              | Xylene                                       | 80                   | 8,905      | 0.0                      | 0.0       | 0.0               | 0.0          | 90                       |
|                              | Triethylamine                                | 277                  | 0.0        | 0.0                      | 0.0       | 0.0               | 0.0          | 0.0                      |
|                              | 1, 2, 4-trimethylbenzene                     | 296                  | 3,199      | 0.0                      | 0.0       | 0.0               | 0.0          | 0.0                      |
| Hanshin Plant                | Toluene                                      | 300                  | 8,925      | 0.0                      | 0.0       | 0.0               | 0.0          | 1,547                    |
| (Mukogawa)                   | lead compounds                               | 305                  | 0.0        | 0.0                      | 0.0       | 0.0               | 0.0          | 6,497                    |
|                              | Nickel                                       | 308                  | 0.0        | 0.0                      | 0.0       | 0.0               | 0.0          | 276                      |
|                              | Phenol                                       | 349                  | 0.0        | 0.0                      | 0.0       | 0.0               | 0.0          | 0.0                      |
|                              | Methylenebis (4,1-phenylene)<br>diisocyanate | 448                  | 0.0        | 0.0                      | 0.0       | 0.0               | 0.0          | 0.0                      |
|                              | Ethylbenzene                                 | 53                   | 14,369     | 0.0                      | 0.0       | 0.0               | 0.0          | 0.0                      |
| Hanshin Plant                | Xylene                                       | 80                   | 35,785     | 0.0                      | 0.0       | 0.0               | 0.0          | 0.0                      |
| (Marushima)                  | Toluene                                      | 300                  | 28,283     | 0.0                      | 0.0       | 0.0               | 0.0          | 0.0                      |
|                              | Nickel                                       | 308                  | 0.0        | 0.0                      | 0.0       | 0.0               | 0.0          | 207                      |
|                              | Chromium and Chromium (III) compounds        | 87                   | 0.0        | 0.0                      | 0.0       | 0.0               | 0.0          | 455                      |
|                              | Toluene                                      | 300                  | 1,514      | 0.0                      | 0.0       | 0.0               | 0.0          | 0.0                      |
|                              | Nickel                                       | 308                  | 1.8        | 0.0                      | 0.0       | 0.0               | 0.0          | 0.23                     |
| Hanshin Plant<br>(Amagasaki) | Boron compounds                              | 405                  | 0.0        | 0.0                      | 0.0       | 0.0               | 0.0          | 1,849                    |
| ę zguouiti)                  | Manganese and its compounds                  | 412                  | 0.0        | 0.0                      | 0.0       | 0.0               | 0.0          | 6,366                    |
|                              | Molybdenum and its compounds                 | 453                  | 0.0        | 0.0                      | 0.0       | 0.0               | 0.0          | 0.0                      |

|                           |                                           |                      |            | Released                 | d amount |                   | Transferre | d amount                 |
|---------------------------|-------------------------------------------|----------------------|------------|--------------------------|----------|-------------------|------------|--------------------------|
| Business site             | Substance name                            | Cabinet<br>Order No. | Atmosphere | Public<br>water<br>areas | Soil     | On-site landfills | Sewerage   | Transfers<br>to off-site |
|                           | Ethylbenzene                              | 53                   | 24,021     | 0.0                      | 0.0      | 0.0               | 0.0        | 479                      |
|                           | Xylene                                    | 80                   | 36,181     | 0.0                      | 0.0      | 0.0               | 0.0        | 699                      |
|                           | Triethylamine                             | 277                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 0.0                      |
|                           | 1, 2, 4-trimethylbenzene                  | 296                  | 2,582      | 0.0                      | 0.0      | 0.0               | 0.0        | 20                       |
|                           | Toluene                                   | 300                  | 58,948     | 0.0                      | 0.0      | 0.0               | 0.0        | 923                      |
| Keiyo Plant               | Nickel                                    | 308                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 28                       |
| (Funabashi)               | Phenol                                    | 349                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 0.0                      |
|                           | Di-n-butyl phthalate                      | 354                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 118                      |
|                           | Manganese and its compounds               | 412                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 9,993                    |
|                           | Methylenebis (4,1-phenylene) diisocyanate | 448                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 0.0                      |
| Keivo Plant               | Ethylbenzene                              | 53                   | 6,389      | 0.0                      | 0.0      | 0.0               | 0.0        | 130                      |
| (Distribution             | Xylene                                    | 80                   | 23,505     | 0.0                      | 0.0      | 0.0               | 0.0        | 480                      |
| Center)                   | Toluene                                   | 300                  | 7,365      | 0.0                      | 0.0      | 0.0               | 0.0        | 150                      |
| Keiyo Plant<br>(Ichikawa) | Manganese and its compounds               | 412                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 0.0                      |
|                           | Ethylbenzene                              | 53                   | 1,327      | 0.0                      | 0.0      | 0.0               | 0.0        | 17,377                   |
|                           | Xylene                                    | 80                   | 2,265      | 0.0                      | 0.0      | 0.0               | 0.0        | 27,604                   |
|                           | Chromium and Chromium (III) compounds     | 87                   | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 2,197                    |
|                           | Cobalt and its compounds                  | 132                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 4                        |
|                           | 1, 2, 4-trimethylbenzene                  | 296                  | 179        | 0.0                      | 0.0      | 0.0               | 0.0        | 2,375                    |
| Hirakata Plant            | Toluene                                   | 300                  | 1,436      | 0.0                      | 0.0      | 0.0               | 0.0        | 16,371                   |
|                           | Nickel                                    | 308                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 10                       |
|                           | Boron compounds                           | 405                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 10                       |
|                           | Manganese and its compounds               | 412                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 4,263                    |
|                           | Molybdenum and its compounds              | 453                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 0.0                      |

|                    |                                           |                      |            | Released                 | d amount |                   | Transferre | d amount                 |   |     |
|--------------------|-------------------------------------------|----------------------|------------|--------------------------|----------|-------------------|------------|--------------------------|---|-----|
| Business site      | Substance name                            | Cabinet<br>Order No. | Atmosphere | Public<br>water<br>areas | Soil     | On-site landfills | Sewerage   | Transfers<br>to off-site |   | Bu  |
|                    | Chromium and Chromium (III) compounds     | 87                   | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 948                      |   |     |
|                    | Triethylamine                             | 277                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 0.0                      |   |     |
|                    | 1, 2, 4-trimethylbenzene                  | 296                  | 1,745      | 0.0                      | 0.0      | 0.0               | 0.0        | 0.0                      |   |     |
| Okajima            | 1, 3, 5-trimethylbenzene                  | 297                  | 524        | 0.0                      | 0.0      | 0.0               | 0.0        | 0.0                      |   |     |
| Business<br>Center | Phenol                                    | 349                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 0.0                      |   | Tsu |
| Center             | Formaldehyde                              | 411                  | 179        | 0.0                      | 0.0      | 0.0               | 0.0        | 0.0                      |   | ISL |
|                    | Manganese and its compounds               | 412                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 1,806                    |   |     |
|                    | Methylenebis (4,1-phenylene) diisocyanate | 448                  | 0.0        | 0.0                      | 0.0      | 0.0               | 21         | 0.0                      |   |     |
|                    | Water-soluble zinc compounds              | 1                    | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 0.0                      |   |     |
|                    | Ethylbenzene                              | 53                   | 2,147      | 0.0                      | 0.0      | 0.0               | 0.0        | 193                      |   |     |
| Sakai Plant        | Xylene                                    | 80                   | 3,036      | 0.0                      | 0.0      | 0.0               | 0.0        | 442                      |   | S   |
|                    | 1, 2, 4-trimethylbenzene                  | 296                  | 151        | 0.0                      | 0.0      | 0.0               | 0.0        | 30                       | П |     |
|                    | 1, 3, 5-trimethylbenzene                  | 297                  | 123        | 0.0                      | 0.0      | 0.0               | 0.0        | 8                        | П |     |
|                    | Toluene                                   | 300                  | 983        | 0.0                      | 0.0      | 0.0               | 0.0        | 177                      |   |     |
|                    | Ethylbenzene                              | 53                   | 40         | 0.0                      | 0.0      | 0.0               | 0.0        | 14                       |   |     |
| Sakai Rinkai       | Xylene                                    | 80                   | 136        | 0.0                      | 0.0      | 0.0               | 0.0        | 44                       |   |     |
| Plant              | Toluene                                   | 300                  | 192        | 0.0                      | 0.0      | 0.0               | 0.0        | 47                       |   |     |
|                    | Benzene                                   | 400                  | 1.7        | 0.0                      | 0.0      | 0.0               | 0.0        | 0.0                      |   |     |
|                    | Water-soluble zinc compounds              | 1                    | 0.0        | 8.4                      | 0.0      | 0.0               | 0.0        | 440                      |   |     |
|                    | Ethylbenzene                              | 53                   | 12,797     | 0.0                      | 0.0      | 0.0               | 0.0        | 4,989                    |   |     |
| Utsunomiya         | Xylene                                    | 80                   | 17,956     | 0.0                      | 0.0      | 0.0               | 0.0        | 7,000                    |   |     |
| Plant              | 1, 2, 4-trimethylbenzene                  | 296                  | 361        | 0.0                      | 0.0      | 0.0               | 0.0        | 141                      |   |     |
|                    | Toluene                                   | 300                  | 1,208      | 0.0                      | 0.0      | 0.0               | 0.0        | 471                      |   |     |
|                    | Naphthalene                               | 302                  | 2,031      | 0.0                      | 0.0      | 0.0               | 0.0        | 0.0                      |   |     |
|                    | n-hexane                                  | 392                  | 0.0        | 0.0                      | 0.0      | 0.0               | 0.0        | 0.0                      |   |     |

| Business site | Substance name                               | Cabinet<br>Order No. | Atmosphere | Public<br>water<br>areas | Soil | On-site<br>landfills | Sewerage | Transfers<br>to off-site |
|---------------|----------------------------------------------|----------------------|------------|--------------------------|------|----------------------|----------|--------------------------|
|               | Water-soluble zinc compounds                 | 1                    | 0.0        | 0.0                      | 0.0  | 0.0                  | 0.0      | 817                      |
|               | Ethylbenzene                                 | 53                   | 45,441     | 0.0                      | 0.0  | 0.0                  | 0.0      | 967                      |
|               | Xylene                                       | 80                   | 55,090     | 0.0                      | 0.0  | 0.0                  | 0.0      | 0.0                      |
|               | 1, 2, 4-trimethylbenzene                     | 296                  | 4,579      | 0.0                      | 0.0  | 0.0                  | 0.0      | 0.0                      |
| Tsukuba Plant | 1, 3, 5-trimethylbenzene                     | 297                  | 1,593      | 0.0                      | 0.0  | 0.0                  | 0.0      | 0.0                      |
|               | Naphthalene                                  | 302                  | 0.0        | 0.0                      | 0.0  | 0.0                  | 0.0      | 710                      |
|               | Nickel compounds                             | 309                  | 0.0        | 0.0                      | 0.0  | 0.0                  | 0.0      | 508                      |
|               | Manganese and its compounds                  | 412                  | 0.0        | 0.0                      | 0.0  | 0.0                  | 21       | 1,136                    |
|               | Methylenebis (4,1-phenylene) diisocyanate    | 448                  | 0.0        | 0.0                      | 0.0  | 0.0                  | 0.0      | 0.0                      |
|               | Xylene                                       | 80                   | 0.0        | 0.0                      | 0.0  | 0.0                  | 0.0      | 73                       |
|               | Styrene                                      | 240                  | 21,831     | 0.0                      | 0.0  | 0.0                  | 0.0      | 0.0                      |
| Shiga Plant   | Di-n-butyl phthalate                         | 354                  | 0.0        | 0.0                      | 0.0  | 0.0                  | 0.0      | 52                       |
|               | Methylenebis (4,1-phenylene)<br>diisocyanate | 448                  | 0.0        | 0.0                      | 0.0  | 0.0                  | 0.0      | 0.0                      |

### Data on KUBOTA group production sites in Japan (results of FY2014)

| Item                     |                                          |                               | Business site                |               | TA-C.I.<br>akai)   |               | TA-C.I.<br>wara)   |               | TA-C.I.<br>chigi)  | Con                 | OTA Air<br>ditioner<br>chigi)             |               | Precision<br>hinery | 10.10         | n Plastic<br>ustry |               | KUBOTA<br>mical    |
|--------------------------|------------------------------------------|-------------------------------|------------------------------|---------------|--------------------|---------------|--------------------|---------------|--------------------|---------------------|-------------------------------------------|---------------|---------------------|---------------|--------------------|---------------|--------------------|
| INPUT                    |                                          |                               |                              |               |                    |               |                    |               |                    |                     |                                           |               |                     |               |                    |               |                    |
|                          |                                          |                               | Unit                         | Volume of use | Heat conversion GJ | Volume of use | Heat conversion GJ | Volume of use | Heat conversion GJ | Volume of use       | Heat conversion GJ                        | Volume of use | Heat conversion GJ  | Volume of use | Heat conversion GJ | Volume of use | Heat conversion GJ |
| Energy                   | Fossil fuel                              |                               | Crude oil<br>equivalent kL   | 89            | 3,431              | 127           | 4,941              | 83            | 3,230              | 286                 | 11,081                                    | 770           | 29,849              | 59            | 2,304              | 2             | 71                 |
|                          | Purchased e                              | electricity                   | MWh                          | 14,229        | 138,880            | 32,452        | 314,452            | 22,782        | 219,344            | 2,717               | 27,091                                    | 14,509        | 140,845             | 15,291        | 148,154            | 8,363         | 80,449             |
|                          | То                                       | otal                          | Crude oil<br>equivalent kL   | 3,672         | 142,311            | 8,240         | 319,393            | 5,742         | 222,574            | 985                 | 38,172                                    | 4,404         | 170,694             | 3,882         | 150,458            | 2,077         | 80,519             |
| Water usage              |                                          |                               | thousand m <sup>3</sup>      | 1             | 17                 | 3             | 36                 | 2             | 73                 |                     | 64                                        | 1             | 19                  | 20            | 0.1                |               | 6                  |
| OUTPUT                   |                                          |                               |                              |               |                    |               |                    |               |                    |                     |                                           |               |                     |               |                    |               |                    |
| CO <sub>2</sub> emission | CO <sub>2</sub> emissio<br>energy source |                               | tons CO <sub>2e</sub>        | 6,0           | 337                | 17,           | 299                | 12,           | 181                | 1                   | 987                                       | 8,8           | 962                 | 8,0           | 017                | 5,            | 123                |
| Monte                    | Discharge ar                             | mount                         | tons                         | 2             | 21                 | 1             | 03                 | 1             | 15                 |                     | 168                                       | 5             | 24                  | 3             | 32                 | 1             | 17                 |
| Waste                    | Recycling ra                             | tio                           | %                            | 99            | 9.9                | 99            | 9.8                | 99            | 9.9                | S                   | 9.9                                       | 10            | 0.0                 | 99            | 9.4                | 99            | 9.5                |
|                          | Main smoke                               |                               | erating facilities*2<br>Unit |               |                    |               |                    |               |                    | Control C           | furnaces<br>Control<br>Content Measuremen |               |                     |               |                    |               |                    |
| Exhaust gas*1            | SOx                                      | K-valu                        | e control                    |               | e and soot         |               | e and soot         |               | e and soot         |                     | wn gas with<br>fur content                |               | e and soot          |               | e and soot         |               | e and soot         |
|                          | ŭ l                                      | Concentration                 | on control: ppm              | gerleratii    | ig iaciiilles      | gerleratii    | ig iaciiilles      | gerleratir    | y raciilles        | Concentration ,     | 230 Less than                             | yellelatii    | ig iauillies        | generalii     | ig iauilles        | yorleratii    | ig iaciiitles      |
|                          | Soot and                                 | n control: g/m <sup>3</sup> N |                              |               |                    |               |                    |               | COLIRO             | 0.2 Less than 0.005 |                                           |               |                     |               |                    |               |                    |

\*1 K-value control and concentration control: Control value (including agreed value) of major smoke and soot generating facilities and the measurement value (maximum value).

\*2 Smoke and soot generating facilities: Those subject to the laws concerning emissions into the atmosphere.

|            |          |                                       | Unit                            | Control value | Measurement    | Control value | Measurement  | Control value | Measurement    |
|------------|----------|---------------------------------------|---------------------------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|----------------|---------------|--------------|---------------|----------------|
|            |          | pH                                    | Minimum value,<br>Maximum value | 5.8-8.6       | 6.5-7.5      | 5.8-8.6       | 8.1–8.4      | 5.8-8.6       | 7.9–8.2      | 5.8-8.6       | 7.4-7.7      | _             | _              | 5.8-8.6       | 5.0-7.5      | _             | _              |
|            |          | BOD                                   | mg/L                            | 25            | 10           | 60            | 1.3          | 20            | 5            | 30            | 9.8          | _             | _              | 160           | 0.9          | _             | _              |
|            |          | COD                                   | mg/L                            | 25            | 12           | 60            | 2.4          | _             | _            | _             | _            | _             | _              | 160           | 1.4          | _             | _              |
|            | Public   | Nitrogen                              | mg/L                            | 60            | 42           | 120           | 0.6          | 60            | 0.66         | _             | _            | _             | _              | _             | _            | _             |                |
|            | ) iii    | Phosphorus                            | mg/L                            | 8             | 5.6          | 16            | 0.12         | 1             | Non-detected | _             | _            | _             | _              | _             | _            | _             | _              |
|            | water    | Hexavalent chromium                   | mg/L                            | 0.5           | Non-detected | 0.5           | Non-detected | 0.1           | Non-detected | 0.1           | Non-detected | _             | _              | _             | _            | _             | _              |
| Orai       | er a     | Lead                                  | mg/L                            | 0.1           | 0.03         | 0.1           | Non-detected | 0.1           | 0.02         | 0.1           | Non-detected | _             | _              | 0.1           | Non-detected | _             | _              |
| Drainage*3 | areas    | COD,<br>total emission control        | kg/day                          | _             | _            | _             | _            | _             | _            | _             | _            | _             | _              | _             | _            | _             | _              |
| ω          |          | Nitrogen,<br>total emission control   | kg/day                          | _             | _            | _             | _            | _             | _            | _             | _            | _             | _              | _             | _            | _             | _              |
|            |          | Phosphorus,<br>total emission control | kg/day                          | _             | _            | _             | _            | _             | _            | _             | _            | _             | _              | _             | _            | _             | _              |
|            | Sewerage | рН                                    | Minimum value,<br>Maximum value | _             | _            | _             | _            | _             | _            | _             | _            |               |                | _             | _            |               |                |
|            | erac     | BOD                                   | mg/L                            | _             | _            | _             | _            | _             | _            | _             | _            | No speci      | fic facilities | _             | _            | No speci      | fic facilities |
|            |          | COD                                   | mg/L                            | _             | _            | _             | _            | _             | _            | _             | _            |               |                | _             | _            |               |                |
|            |          | SS                                    | mg/L                            | _             | _            | _             | _            |               |              |               | _            |               |                |               | _            |               |                |

\*3 Total regulations are plant unit control values, agreed values and measurement values. Concentration regulations are plant unit control values (including agreed values) and measurement values. surement values (maximum value).

### Results of PRTR reporting (Unit: kg/year)

|                                  |                                            | Cabinet Order |            | Released           | d amount |                   | Transferre | d amount              |
|----------------------------------|--------------------------------------------|---------------|------------|--------------------|----------|-------------------|------------|-----------------------|
| Business site                    | Substance name                             | No.           | Atmosphere | Public water areas | Soil     | On-site landfills | Sewerage   | Transfers to off-site |
|                                  | Xylene                                     | 80            | 36         | 0.0                | 0.0      | 0.0               | 0.0        | 0.0                   |
| KUBOTA-C.I. (Sakai)              | Organic tin compounds                      | 239           | 0.01       | 0.0                | 0.0      | 0.0               | 0.0        | 0.1                   |
| KUBUTA-C.I. (Sakai)              | 1, 2, 4-trimethylbenzene                   | 296           | 0.01       | 0.0                | 0.0      | 0.0               | 0.0        | 0.0                   |
|                                  | Lead compounds                             | 305           | 0.95       | 0.0                | 0.0      | 0.0               | 0.0        | 33                    |
| KUBOTA-C.I. (Odawara)            | Organic tin compounds                      | 239           | 0.0        | 0.0                | 0.0      | 0.0               | 0.0        | 8.8                   |
| KUBUTA-C.I. (Odawara)            | Lead compounds                             | 305           | 0.0        | 0.0                | 0.0      | 0.0               | 0.0        | 113                   |
|                                  | Chromium and chromium (III) compounds      | 87            | 0.0        | 0.0                | 0.0      | 0.0               | 0.0        | 0.7                   |
| KUBOTA-C.I. (Tochiqi)            | Organic tin compounds                      | 239           | 0.0        | 0.0                | 0.0      | 0.0               | 0.0        | 2.5                   |
| KUBUTA-C.I. (Tochigi)            | Toluene                                    | 300           | 594        | 0.0                | 0.0      | 0.0               | 0.0        | 0.0                   |
|                                  | Lead compounds                             | 305           | 0.0        | 0.0                | 0.0      | 0.0               | 0.0        | 245                   |
| KUBOTA Air Conditioner (Tochiqi) | Ferric chloride                            | 71            | 0.0        | 0.0                | 0.0      | 0.0               | 0.0        | 0.0                   |
| KUBUTA Air Conditioner (Tochigi) | Methylenebis (4, 1-phenylene) diisocyanate | 448           | 0.0        | 0.0                | 0.0      | 0.0               | 0.0        | 0.0                   |
| KUBOTA Precision Machinery       | N,N-Dicyclohexylamine                      | 188           | 0.0        | 0.0                | 0.0      | 0.0               | 0.0        | 1,139                 |
| Nissas Disatis Industry          | Chromium and chromium (III) compounds      | 87            | 0.0        | 0.0                | 0.0      | 0.0               | 0.0        | 0.0                   |
| Nippon Plastic Industry          | Lead compounds                             | 305           | 3.7        | 0.0                | 0.0      | 0.0               | 0.0        | 6.2                   |
| Kyushu KUBOTA Chemical           | Organic tin compounds                      | 239           | 0.0        | 0.0                | 0.0      | 0.0               | 0.0        | 2.1                   |
| Nyushu Nobora Chemical           | Lead compounds                             | 305           | 1.9        | 0.0                | 0.0      | 0.0               | 0.0        | 48                    |

### Data on KUBOTA Group Overseas Production Sites (results of FY2014)

|                          | Re                                        | gion          |                            | North America                                  |                  |                         |                                            |               |                         |                                        | Europe        |                         |                  |                          |                       |               |                         |                                |               |                        |
|--------------------------|-------------------------------------------|---------------|----------------------------|------------------------------------------------|------------------|-------------------------|--------------------------------------------|---------------|-------------------------|----------------------------------------|---------------|-------------------------|------------------|--------------------------|-----------------------|---------------|-------------------------|--------------------------------|---------------|------------------------|
| Item                     |                                           |               | Business site              | Kubota Manufacturing of<br>America Corporation |                  |                         | Kubota Industrial<br>Equipment Corporation |               |                         | Kubota Materials<br>Canada Corporation |               |                         | Kubota Bau<br>Gm |                          |                       | neland G      | Group<br>way AS         | Kverneland Group<br>Soest GmbH |               |                        |
| INPUT                    |                                           |               |                            |                                                |                  |                         |                                            |               |                         |                                        |               |                         |                  |                          |                       |               |                         |                                |               |                        |
|                          |                                           |               | Unit                       | Volume<br>use                                  | of co            | Heat<br>Inversion<br>GJ | Volume<br>use                              | of co         | Heat<br>onversion<br>GJ | Volume<br>use                          | of co         | Heat<br>onversion<br>GJ | Volume of use    | Heat<br>conversion<br>GJ | Volume<br>use         | of co         | Heat<br>onversion<br>GJ | Volume<br>use                  |               | Heat<br>nversion<br>GJ |
| Energy                   | Fossil fuel                               |               | Crude oil<br>equivalent kL | 4,26                                           | 69               | 165,467                 | 2,43                                       | 31            | 94,240                  | 6,61                                   | 1 :           | 256,222                 | 576              | 22,325                   | 2,78                  | 5             | 107,964                 | 74                             | 0             | 28,690                 |
|                          | Purchased e                               | electricity   | MWh                        | 24,04                                          | 2 :              | 239,700                 | 22,92                                      | 22            | 228,530                 | 16,60                                  | 00            | 165,502                 | 2,434            | 24,269                   | 38,46                 | 0 3           | 383,449                 | 3,66                           | 5             | 36,535                 |
|                          | To                                        | otal          | Crude oil equivalent kL    | 10,45                                          | i3 ·             | 405,167                 | 8,32                                       | 27            | 322,769                 | 10,88                                  | 80 4          | 421,724                 | 1,202            | 46,594                   | 12,67                 | 8 4           | 491,413                 | 1,68                           | 3             | 65,225                 |
| Water usage              |                                           |               | thousand m <sup>3</sup>    |                                                | 73               |                         |                                            | 29            |                         |                                        | 50            |                         | 6                | 3                        |                       | 60            |                         |                                | 3             |                        |
| OUTPUT                   |                                           |               |                            |                                                |                  |                         |                                            |               |                         |                                        |               |                         |                  |                          |                       |               |                         |                                |               |                        |
| CO <sub>2</sub> emission | CO <sub>2</sub> emission<br>energy source |               | tons CO <sub>2e</sub>      |                                                | 23,210           |                         |                                            | 18,688        |                         |                                        | 15,885        |                         | 2,2              | 64                       |                       | 6,292         |                         |                                | 3,051         |                        |
|                          | Discharge ar                              | mount         | tons                       |                                                | 2,465            |                         |                                            | 1,524         |                         |                                        | 4,981         |                         | 35               | 51                       |                       | 365           |                         |                                | 465           |                        |
| Waste                    | Recycling rat                             | tio           | %                          |                                                | 92.3             |                         |                                            | 96.0          |                         |                                        | 30.3          |                         | 98               | .0                       |                       | 92.5          |                         |                                | 90.0          |                        |
|                          | Main smoke                                | and soot gene | erating facilities*2       |                                                | Boilers          |                         |                                            | Boilers       |                         |                                        | _             |                         |                  |                          |                       | _             |                         |                                | _             |                        |
|                          |                                           | ı             | Jnit                       | Control content                                | Control<br>value | Measurement             | Control content                            | Control value | Measurement             | Control content                        | Control value | Measurement             |                  |                          | Control content       | Control value | Measurement             | Control<br>content             | Control value | Measuremer             |
| Exhaust gas*1            | SOx                                       | Concentr      | ation control              | Use of town gas with zero sulfur content       |                  |                         | Concentration control                      | _             | _                       | Concentration control                  | _             |                         | No smoke         |                          | Concentration control |               | _                       | Concentration control          | _             | _                      |
|                          | NOx                                       | Concentration | n control: ppm             | Concentration control                          | _                | 25                      | Concentration control                      | _             | 24                      | Concentration control                  | _             |                         | gonodani         | g                        | Concentration control | _             | -                       | Concentration control          | _             | _                      |
| Ct                       | Concentration control: ppm                |               | Concentration              |                                                |                  | Concentration           |                                            |               | Concentration           |                                        |               |                         |                  | Concentration            |                       |               | Concentration           |                                |               |                        |

\*1 Concentration control: Control value (including agreed value) of major smoke and soot generating facilities and the measurement value (maximum value).
\*2 Smoke and soot generating facilities: Those subject to the laws concerning emissions into the atmosphere.

|            |          |                                       | Unit                            | Control value | Measurement         | Control value | Measurement | Control value                           | Measurement |
|------------|----------|---------------------------------------|---------------------------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------|---------------------|---------------|-------------|-----------------------------------------|-------------|
|            |          | рН                                    | Minimum value,<br>Maximum value | _             | _           | _             | _           | _             | _           | _             | _                   | _             | _           | _                                       | _           |
|            |          | BOD                                   | mg/L                            | _             | _           | _             | _           | _             | _           | _             | _                   | _             | _           | _                                       | _           |
|            |          | COD                                   | mg/L                            | _             | _           | _             | _           | _             | _           | 1             | 1                   | _             | _           | _                                       | _           |
|            | Public   | Nitrogen                              | mg/L                            | _             | _           | _             | _           | _             | _           | _             | _                   | _             | _           | _                                       | _           |
|            | 8        | Phosphorus                            | mg/L                            | _             | _           | _             | _           | _             | _           | _             | _                   | _             | _           | _                                       | _           |
| _          | water    | Hexavalent chromium                   | mg/L                            | _             | _           | _             | _           | _             | _           |               | _                   | _             | _           | _                                       | _           |
| Oraii      | er ar    | Lead                                  | mg/L                            | _             | _           | _             | _           | _             | _           | I             | 1                   | _             | _           | _                                       | _           |
| Drainage*3 | areas    | COD,<br>total emission control        | kg/day                          | _             | _           | _             | _           | _             | _           | _             | _                   | _             | _           | _                                       | _           |
| w          |          | Nitrogen,<br>total emission control   | kg/day                          | _             | _           | _             | _           | _             | _           | _             | _                   | _             | _           | _                                       | _           |
|            |          | Phosphorus,<br>total emission control | kg/day                          | _             | _           | _             | _           | _             | _           | _             | _                   | _             | _           | _                                       | _           |
|            | Sewerage | рН                                    | Minimum value,<br>Maximum value | 6.0-9.5       | 7.6         | 6.0–9.0       | 7.7         | 5.5–9.5       | 7.5         | 6.5–9.0       | 7.4, 8.7            |               |             |                                         |             |
|            | e ag     | BOD                                   | mg/L                            | 900           | 98.6        | 250           | 10.4        | 300           | 2           | _             | _                   | (Sewage       | discharge)  | (Sewage (                               | discharge)  |
|            | ⊕ =      | COD                                   | mg/L                            | _             | _           | _             | _           | _             | _           | 1,000         | 1,100 <sup>*4</sup> | (** ***       |             | (************************************** | 3.,         |
|            | lines    | SS                                    | mg/L                            | 900           | 31.8        | 250           | 19.8        | 350           | 3           | -             |                     |               |             |                                         |             |

\*3 Concentration regulations are plant unit control values (including agreed values) and measurement values (maximum value).
\*4 Post-treatment water quality temporarily exceeded regulated values, but the water was discharged with government approval.

Results of chemical substances reporting Toxics Release Inventory (TRI) Program (U.S. EPA) (Unit: kg/year)

| Business site                               | Substance name         | CAS Number | On-site disposal and amount of emissions | Recycled Off-site | Off-site disposal and amount of emissions |
|---------------------------------------------|------------------------|------------|------------------------------------------|-------------------|-------------------------------------------|
|                                             | Chromium               | 7440-47-3  | 732                                      | 26,207            | 0.39                                      |
|                                             | Manganese              | 7439-96-5  | 5,934                                    | 209,658           | 0                                         |
|                                             | Nickel                 | 7440-02-0  | 981                                      | 35,292            | 2.62                                      |
| Kubota Manufacturing of America Corporation | Ethylene glycol        | 107-21-1   | 0                                        | 0                 | 676                                       |
|                                             | Lead                   | 7439-92-1  | 19.5                                     | 699               | 0                                         |
|                                             | Sulfuric acid          | 7664-93-9  | 0                                        | 0                 | 0                                         |
|                                             | Diisocyanates          | 101-68-8   | 0                                        | 0                 | 0                                         |
|                                             | Chromium               | 7440-47-3  | 0.27                                     | 0.06              | 0                                         |
|                                             | Manganese              | 7439-96-5  | 176                                      | 0.12              | 0                                         |
| Kubota Industrial Equipment Corporation     | Nickel                 | 7440-02-0  | 0.11                                     | 0.02              | 0                                         |
|                                             | Lead                   | 7439-92-1  | 3.45                                     | 0.002             | 0                                         |
|                                             | Methyl Isobutyl Ketone | 108-10-1   | 2,865                                    | 15,297            | 0                                         |

Reporting to National Pollutant Release Inventory (Canada) (Unit: kg/year)

| Business site                       | Substance name                 | Control law number | Release quantity | Amount of off-site recycled waste |
|-------------------------------------|--------------------------------|--------------------|------------------|-----------------------------------|
|                                     | Chromium (and its compounds)   | NA-04              | 68               | 24,569                            |
|                                     | Manganese (and its compounds)  | NA-09              | 189              | 1,039                             |
| Kubota Materials Canada Corporation | Nickel (and its compounds)     | NA-11              | 72               | 31,129                            |
|                                     | PM10-Particulate Matter≦10µm   | NA-M09             | 16,251           | 0                                 |
|                                     | PM2.5-Particulate Matter≦2.5µm | NA-M10             | 16,169           | 0                                 |

### Data on KUBOTA Group Overseas Production Sites (results of FY2014) (Continued from page 66)

|                   |          | Regio                                         | on                                     |                           |                            |                       |                          |                               | Eur                   | ope                        |                         |                    |                       |                           |                       |                          |                                   |                           |                                |                                       |                       | Asi                         | ia                 |                      |                    |                            |                    |                           |                       |
|-------------------|----------|-----------------------------------------------|----------------------------------------|---------------------------|----------------------------|-----------------------|--------------------------|-------------------------------|-----------------------|----------------------------|-------------------------|--------------------|-----------------------|---------------------------|-----------------------|--------------------------|-----------------------------------|---------------------------|--------------------------------|---------------------------------------|-----------------------|-----------------------------|--------------------|----------------------|--------------------|----------------------------|--------------------|---------------------------|-----------------------|
| Item              |          |                                               | Business s                             |                           | eland Group<br>Vennep B.V. |                       | eland Group<br>eminde AS | Kvernelar<br>Les Landes G     |                       | Kvernelai<br>Moder         | nd Group<br>na SpA      | Kvernela<br>Raveni | nd Group<br>na S.r.l. | Kvernelai<br>Manufactui   |                       | Kubota A<br>Machinery (S | gricultural<br>UZHOU) Co.,<br>td. | Kubota Co<br>Machinery (M | onstruction<br>/UXI) Co., Ltd. | Kubota (<br>Environmenta<br>(ANHUI) ( | I Engineering         | Kverneland /<br>Equipment [ |                    | SIAM KUBOT<br>(Headd |                    | SIAM KUBOTA<br>(Amata Nal  |                    | SIAM KU<br>Metal Tec      |                       |
| INPU <sup>*</sup> | Τ        |                                               |                                        |                           |                            |                       |                          |                               |                       |                            |                         |                    |                       |                           |                       |                          |                                   |                           |                                |                                       |                       |                             |                    |                      |                    |                            |                    |                           |                       |
|                   |          |                                               | Unit                                   | Volume of us              | e Heat conversion Gu       | Volume of us          | se Heat conversion GJ    | Volume of use                 | Heat<br>conversion GJ | Volume of use              | Heat conversion GJ      | Volume of use      | Heat conversion GJ    | Volume of use             | Heat<br>conversion GJ | Volume of use            | Heat<br>conversion GJ             | Volume of use             | Heat<br>conversion GJ          | Volume of use                         | Heat<br>conversion GJ | Volume of use               | Heat conversion GJ | Volume of use        | Heat conversion GJ | Volume of use              | Heat conversion GJ | Volume of use             | Heat<br>conversion GJ |
| Ene               | ergy     | Fossil fuel                                   | Crude oil<br>equivalent k              | 1,029                     | 39,878                     | 1,211                 | 46,951                   | 25                            | 970                   | 231                        | 8,969                   | 443                | 17,174                | 6                         | 216                   | 1,915                    | 74,211                            | 232                       | 8,983                          | 3                                     | 105                   | 67                          | 2,600              | 373                  | 14,448             | 1,468                      | 56,883             | 336                       | 13,017                |
|                   | ,        | Purchased elect                               | tricity MWh                            | 2,536                     | 25,288                     | 5,603                 | 55,857                   | 585                           | 5,832                 | 790                        | 7,877                   | 1,409              | 14,048                | 70                        | 695                   | 11,171                   | 111,376                           | 4,093                     | 40,811                         | 66                                    | 654                   | 121                         | 1,208              | 8,970                | 89,430             | 14,372                     | 143,286            | 34,382                    | 342,790               |
|                   |          | Total                                         | Crude oil<br>equivalent k              | 1,681                     | 65,166                     | 2,652                 | 102,808                  | 175                           | 6,802                 | 435                        | 16,846                  | 806                | 31,222                | 23                        | 910                   | 4,788                    | 185,586                           | 1,285                     | 49,794                         | 20                                    | 758                   | 98                          | 3,808              | 2,680                | 103,878            | 5,164                      | 200,169            | 9,180                     | 355,807               |
| Water             | usage    |                                               | thousand m                             | 3                         | 12                         |                       | 34                       |                               | )                     | 4                          | 4                       |                    | 8                     | 0.                        | 3                     | 10                       | 08                                | 1                         | 13                             | 0.                                    | 8                     | 0.4                         | 4                  | 7                    | 2                  | 16                         | 34                 | 59                        | 9                     |
| OUTF              |          |                                               |                                        |                           |                            |                       | -                        |                               |                       |                            |                         |                    |                       |                           | -                     |                          |                                   |                           |                                |                                       |                       |                             |                    |                      |                    |                            |                    |                           |                       |
| CO <sub>2</sub> e | mission  | CO <sub>2</sub> emissions f<br>energy sources | from tons CO <sub>2e</sub>             | 2                         | 2,995                      |                       | 4,735                    | 11                            | 9                     | 77                         | 74                      | 1,4                | 142                   | 3                         | 7                     | 12,                      | 767                               | 3,8                       | 548                            | 50                                    | 6                     | 22                          | 22                 | 5,4                  | -01                | 10,7                       | 797                | 18,4                      | 120                   |
|                   |          | Discharge amou                                | unt tons                               |                           | 475                        |                       | 312                      | 6                             | 4                     | 9                          | 17                      | 10                 | 01                    |                           | )                     | 6                        | 35                                | 6                         | 69                             | 1 0                                   | )                     | 0                           | )                  | 32                   | 20                 | 63                         | 31                 | 15,1                      | 193                   |
| VVa               | aste     | Recycling ratio                               | %                                      |                           | 94.6                       |                       | 98.0                     | 85                            | .4                    | 24                         | 1.2                     | 49                 | 9.1                   | 80                        | .0                    | 99                       | 9.7                               | 76                        | 6.0                            | _                                     | -                     | _                           | _                  | 97                   | .3                 | 93                         | 3.6                | 66.                       | .1                    |
|                   |          | Main smoke and                                | d soot generating facilities           | *2                        | _                          |                       | _                        | _                             |                       | Boi                        | ilers                   |                    | _                     | _                         | -                     | Во                       | ilers                             | Preheatin                 | g furnaces                     | _                                     | -                     | _                           | _                  | Drying t             | urnaces            | Drying fi                  | urnaces            | Heating fu                | iurnaces              |
|                   |          |                                               | Unit                                   | Control Content           | Control Measureme          |                       | Control Measurement      | Control Cor<br>content val    | ntrol Measurement     | Control Cor<br>content val | ntrol<br>lue Measuremen | Control Control va | ntrol<br>Measurement  | Control Cor<br>content va | trol Measuremer       | Control Co               | ntrol Measuremen                  | . Control Co              |                                | Control Con                           | itrol Measurement     | Control Control value       | ntrol Measuremen   | . Control Co         |                    | Control Cor<br>content val | ntrol Massurament  | Control Cont              | ntrol Management      |
| Exhau             | st gas*1 | SOx                                           | Concentration control                  |                           | Non-<br>etected            |                       | Non-<br>detected         | Concentration No control dete |                       | (ppm) No                   |                         | Concentration No   | on-<br>ected          | Concentration No          |                       | (mg/m <sup>3</sup> ) 1   | 00 2                              | (mg/m <sup>3</sup> ) 5    | 50 0.023                       | Concentration No control deter        |                       | Concentration Nor           |                    | (ppm) 6              | 0 Less than        | (ppm) 6                    | 0 2.83             | (ppm) 50                  | 00 3.55               |
|                   | Ü        | NOx C                                         | Concentration control: ppr             |                           | Non-<br>etected —          | Concentration control | Non-<br>detected         | Concentration No control dete |                       | Concentration No           |                         | Concentration No   | on-<br>ected          | Concentration No          |                       | Concentration 4          | 00 25.8                           | (mg/m <sup>3</sup> ) 2    | 40 0.1                         | Concentration No control deter        |                       | Concentration Nor           |                    | Concentration 20     | 00 2               | Concentration control 20   | 00 1.9             | Concentration             |                       |
|                   |          | Soot and Co                                   | oncentration control: g/m <sup>3</sup> | N Concentration control d | Non-<br>etected            | Concentration         | Non-<br>detected         | Concentration No              |                       | Concentration No           | n- 0.0001               | Concentration No   | on-<br>ected          | Concentration No          | n-                    | Concentration O.         | 05 0.014                          | Concentration O.          | .12 0.006                      | Concentration No control deter        |                       | Concentration Nor           |                    | 0 1 11               | 32 0.004           | Concentration control      | 32 0.021           | Concentration control 0.0 | 0.001                 |
|                   |          |                                               |                                        |                           | ,                          |                       | ,                        |                               |                       |                            |                         |                    |                       |                           |                       |                          | <u> </u>                          |                           |                                |                                       |                       |                             |                    |                      |                    |                            |                    |                           |                       |
|                   |          |                                               | Unit                                   | Control value             | Measurement                | Control valu          | e Measurement            | Control value                 | Measurement           | Control value              | Measurement             | Control value      | Measurement           | Control value             | Measurement           | Control value            | Measurement                       | Control value             | Measurement                    | Control value                         | Measurement           | Control value               | Measurement        | Control value        | Measurement        | Control value              | Measurement        | Control value             | Measurement           |
|                   |          | рН                                            | Minimum valu<br>Maximum val            | e,                        | _                          | _                     | _                        | _                             | _                     | _                          | _                       | _                  | _                     | _                         | _                     | _                        | _                                 | _                         | _                              |                                       | _                     | _                           | _                  | _                    | _                  | _                          | _                  |                           |                       |
|                   |          | BOD                                           | mg/L                                   | _                         | _                          | _                     | _                        | _                             | _                     | _                          | _                       |                    | _                     | _                         | _                     |                          | _                                 | _                         | _                              |                                       | _                     | _                           | _                  | _                    | _                  | _                          | _                  | l .                       |                       |
|                   |          | COD                                           | mg/L                                   | _                         | _                          | _                     | _                        | _                             | _                     | _                          | _                       | _                  | _                     | _                         | _                     | _                        | _                                 | _                         | _                              |                                       | _                     | _                           | _                  | _                    | _                  | _                          | _                  | 1                         |                       |
|                   | Pub      | Nitrogen                                      | mg/L                                   | _                         | _                          | _                     | _                        | _                             | _                     | _                          | _                       | _                  | _                     | _                         |                       | _                        | _                                 | _                         | _                              |                                       | _                     | _                           | _                  | _                    |                    | _                          |                    | 1                         |                       |
|                   | lic w    | Phosphorus                                    | mg/L                                   | _                         |                            | _                     |                          |                               | _                     | _                          | _                       |                    | _                     |                           |                       |                          | _                                 | _                         | _                              |                                       | _                     |                             |                    | _                    | _                  | _                          | _                  | 4                         |                       |
| D                 | ater     | Hexavalent chro                               |                                        |                           |                            |                       |                          |                               |                       |                            | _                       |                    | _                     |                           |                       |                          | _                                 | _                         |                                | _                                     |                       |                             |                    |                      |                    | _                          |                    | 1                         |                       |
| raina             | area     | Lead<br>COD,                                  | mg/L                                   |                           |                            |                       |                          | _                             |                       |                            |                         |                    |                       |                           |                       |                          | _                                 | _                         |                                |                                       |                       |                             |                    |                      |                    | _                          |                    | 1                         |                       |
| Ge³3              | SE       | total emission co                             |                                        |                           |                            | _                     |                          | _                             |                       | _                          | _                       | _                  | _                     |                           |                       |                          | _                                 | _                         | _                              | _                                     |                       |                             |                    | _                    | _                  | _                          | _                  | (No external war          | .ter discharge)       |
|                   |          | total emission co                             | ontrol kg/day                          | _                         |                            | _                     |                          | _                             |                       |                            | _                       |                    | _                     |                           |                       | _                        | _                                 | _                         | _                              | _                                     |                       |                             |                    | _                    |                    | _                          |                    |                           |                       |

(Sewage discharge)

5.5-9.5

500

200

(Sewage discharge)

6.9

37

250 Non-detected

7.9

59.9

125

6.5-9.5

300

500

400

6.0-9.0

300

500

400

7.7, 8.0

3.4

34.3

|                          | Re                                                                          | gion          |                               |                       |                  |                    |                                       |                  |                     |                       | Asia             |                     |                       |                  |                    |                                |                  |                    |
|--------------------------|-----------------------------------------------------------------------------|---------------|-------------------------------|-----------------------|------------------|--------------------|---------------------------------------|------------------|---------------------|-----------------------|------------------|---------------------|-----------------------|------------------|--------------------|--------------------------------|------------------|--------------------|
| Item                     |                                                                             | 3.5           | Business site                 | KUBOTA                | Engine (T        | Thailand)          | Kubota Precision Machinery (Thailand) |                  |                     | P.T.Kubota Indonesia  |                  |                     | P.T.Metec Semarang    |                  |                    | Kubota Saudi Arabia<br>Company |                  |                    |
| INPUT                    |                                                                             |               |                               |                       |                  |                    |                                       |                  |                     |                       |                  |                     |                       |                  |                    |                                |                  |                    |
|                          |                                                                             |               | Unit                          | Volume of u           | se conv          | Heat<br>version GJ | Volume of                             | use coi          | Heat<br>nversion GJ | Volume of             | use cor          | Heat<br>nversion GJ | Volume of             | use con          | Heat<br>version GJ | Volume of a                    | use con          | Heat<br>version GJ |
| Energy                   | Fossil fuel                                                                 |               | Crude oil equivalent kL       | 363                   |                  | 14,058             | 17                                    |                  | 663                 | 406                   | 3                | 15,738              | 372                   | 2                | 14,414             | 3,522                          |                  | 136,508            |
|                          | Purchased e                                                                 | lectricity    | MWh                           | 8,510                 |                  | 84,843             | 357                                   |                  | 3,563               | 2,810                 | 3                | 28,048              | 4,900                 | )                | 48,849             | (                              | )                | 0                  |
|                          | To                                                                          | otal          | Crude oil equivalent kL       | 2,552                 |                  | 98,901             | 109                                   |                  | 4,226               | 1,130                 |                  | 43,786              | 1,632                 | 2                | 63,262             | 3,522                          |                  | 136,508            |
| Water usage              |                                                                             |               | thousand m <sup>3</sup>       |                       | 10               |                    |                                       | 2                |                     |                       | 49               |                     |                       | 36               |                    |                                | 11               |                    |
| DUTPUT                   | ITPUT                                                                       |               |                               |                       |                  |                    |                                       |                  |                     |                       |                  |                     |                       |                  |                    |                                |                  |                    |
| CO <sub>2</sub> emission | mission CO <sub>2</sub> emissions from energy sources tons CO <sub>2e</sub> |               |                               |                       | 5,286            |                    |                                       | 228              |                     |                       | 3,171            |                     |                       | 4,517            |                    |                                | 9,064            |                    |
|                          | Discharge ar                                                                | mount         | tons                          | 507                   |                  |                    | 54                                    |                  |                     | 9                     |                  |                     | 343                   |                  |                    | 792                            |                  |                    |
| Waste                    | Recycling ra                                                                | tio           | %                             |                       | 91.4             |                    |                                       | 85.5             |                     |                       | 97.1             |                     |                       | 88.7             |                    |                                | 3.4              |                    |
|                          | Main smoke                                                                  | and soot gene | erating facilities*2          | Prehe                 | iting furn       | aces               |                                       | _                |                     |                       | _                |                     | Dn                    | ing furnac       | ces                |                                | _                |                    |
|                          |                                                                             |               | Jnit                          | Control content       | Control<br>value | Measurement        | Control content                       | Control value    | Measurement         | Control content       | Control<br>value | Measurement         | Control<br>content    | Control<br>value | Measurement        | Control content                | Control value    | Measuremer         |
| Exhaust gas*1            | SOx                                                                         | Concentr      | ation control                 | (ppm)                 | Non-<br>detected | 38.4               | (ppm)                                 | Non-<br>detected | -                   | Concentration control | Non-<br>detected | -                   | (mg/m <sup>3</sup> )  | 800              | 2.0                | Concentration control          | Non-<br>detected | _                  |
| Exitador yas             | NOx                                                                         | Concentration | on control: ppm               | Concentration control | Non-<br>detected | 25.1               | Concentration control                 | Non-<br>detected | _                   | Concentration control | Non-<br>detected | _                   | (mg/m <sup>3</sup> )  | 1000             | 1.0                | Concentration control          | Non-<br>detected | _                  |
|                          | Soot and dust                                                               | Concentration | n control: g/m <sup>3</sup> N | Concentration control | Non-<br>detected | 0.062              | Concentration control                 | Non-<br>detected | -                   | Concentration control | Non-<br>detected | _                   | Concentration control | 0.35             | 0.012              | Concentration control          | Non-<br>detected | _                  |

6.5–9.5 2.8<sup>\*4</sup>, 8.8

7.4

6.5-9.0

mg/L

mg/L

| BOD                                   | Minimum value,<br>Maximum value<br>mg/L                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | ma/l                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                         | 6.0–9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.0, 8.1 | 6.0–9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.0, 8.0        | _                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                          |
| 000                                   | g/ =                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20       | 100/50*5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 155/68*5        | _                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                          |
| COD                                   | mg/L                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                         | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47       | 250/100*5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 338/162*5       | _                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                          |
| Nitrogen                              | mg/L                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _               | _                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                          |
| Phosphorus                            | mg/L                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _               | _                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                          |
| Hexavalent chromium                   | mg/L                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0015   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0004          | _                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                          |
| Lead                                  | mg/L                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.005           | _                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                          |
| COD,<br>total emission control        | kg/day                                                                                                                                                  | (No external water disch                                                                                                                                                                                            | arge)                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _               | _                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                          |
| Nitrogen,<br>total emission control   | kg/day                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _               | _                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                          |
| Phosphorus,<br>total emission control | kg/day                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _               | _                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                          |
| pН                                    | Minimum value,<br>Maximum value                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            | 5.5–9.0                                                                                                                                                                                                                                                                                | 7.3                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _               |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                            |
| BOD                                   | mg/L                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            | 500                                                                                                                                                                                                                                                                                    | 23                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _               | Transported to                                                                                                                                                                                                                              | sewage plant                                                                                                                                                                                                                                                                                                                                               |
| COD                                   | mg/L                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            | 750                                                                                                                                                                                                                                                                                    | 275                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _               |                                                                                                                                                                                                                                             | 37                                                                                                                                                                                                                                                                                                                                                         |
| SS                                    | mg/L                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            | 200                                                                                                                                                                                                                                                                                    | 34                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _               |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                            |
|                                       | Nitrogen Phosphorus Hexavalent chromium Lead COD, total emission control Nitrogen, total emission control Phosphorus, total emission control pH BOD COD | Nitrogen mg/L Phosphorus mg/L Hexavalent chromium mg/L Lead mg/L COD, total emission control Nitrogen, total emission control Phosphorus, total emission control pH Mainmum value, Maximum value, BOD mg/L COD mg/L | Nitrogen mg/L Phosphorus mg/L Hexavalent chromium mg/L Lead mg/L COD, total emission control kg/day Nitrogen, total emission control kg/day ph sphorus, kg/day total emission control phosphorus, kg/day ph Minimum value, Maximum value BOD mg/L COD mg/L | Nitrogen mg/L Phosphorus mg/L Hexavalent chromium mg/L Lead mg/L COD, total emission control kg/day Nitrogen, total emission control votal emission control phosphorus, total emission control ph Phosphorus, total emission control ph Minimum value, Maximum value BOD mg/L COD mg/L | Nitrogen mg/L Phosphorus mg/L Hexavalent chromium mg/L Lead mg/L COD, total emission control kg/day Nitrogen, total emission control Phosphorus, kg/day total emission control pH Minimum value, Maximum value BOD mg/L COD mg/L COD mg/L | Nitrogen         mg/L           Phosphorus         mg/L           Hexavalent chromium         mg/L           Lead         mg/L           COD, total emission control         kg/day           Nitrogen, total emission control         kg/day           Phosphorus, total emission control         kg/day           pH         Minimum value, Maximum value           BOD         mg/L           COD         mg/L           COD         mg/L           COD         23           750         275 | Nitrogen | Nitrogen   mg/L   Phosphorus   mg/L   Hexavalent chromium   mg/L   Lead   mg/L   COD, total emission control   kg/day   Nitrogen, total emission control   kg/day   Phosphorus, total emission control   kg/ | Nitrogen   mg/L | Nitrogen   mg/L   Phosphorus   mg/L     Hexavalent chromium   mg/L     Lead   mg/L     COD,   total emission control   kg/day   Nitrogen, Total emission control   kg/day   Phosphorus   kg/day   Phosphorus   kg/day   Phosphorus   kg/day | Nitrogen   mg/L   Phosphorus   mg/L   Hexavalent chromium   mg/L   Lead   mg/L   COD, total emission control   kg/day   Nitrogen, Vitral emission control   kg/day   Phosphorus, total emission control   kg/day |

- \*1 Concentration control: Control value (including agreed value) of major smoke and soot generating facilities and the

500

400

\*2 Smoke and soot generating facilities: Those subject to the laws concerning emissions into the atmosphere.
 \*3 Total regulations are plant unit control values, agreed values and measurement values. Concentration control: Control value (including agreed value) by plant and the measurement value (maximum value).

60.0

7.3

110

263

6.0-9.0

450

650

500

5.5-9.0

500

750

6.9

107

- \*4 Post-treatment water quality temporarily exceeded regulated values, but the water was adjusted receiving government approval.
- \*5 Due to a change in the categories of regulations made in September 2013, the regulation values and measured values for the period prior to August and the period after September are reported. Between August and October, the measured value exceeded the regulation value, but this was reported to the government and we have been implementing an alternative plan. As of November, the measured value has been under the regulation value.

# Calculation Standards of Environmental Performance Indicators

- Period: April 2013 to March 2014 (overseas data: January 2013 to December 2013)
   Organizations covered: KUBOTA Corporation and 61 consolidated subsidiaries in Japan, and 101 overseas consolidated subsidiaries (Totals for consolidated subsidiaries (162 companies)) (100% coverage)

| E                      | nvironmental performance                                        | Unit           |                                                                                         |                                         |                                                                                          | Cal                                                                                                                                                       | culation method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------|-----------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | indicators                                                      | Orint          | Coloulation from 1.3                                                                    | A Ar                                    | t of mumob 1                                                                             |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | Total energy input                                              | TJ             | [Calculation formula]                                                                   | <ul><li>value of<br/>Per-uni</li></ul>  | f each fuel]                                                                             |                                                                                                                                                           | per-unit heat value + $\sum$ [amount of each fuel consumed x per-unit heat accordance with the Enforcement Regulation for the Act on the Rational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | (TJ: 10 <sup>12</sup> J)                                        | 10             | [Calculation scope]                                                                     | Purcha                                  | sed electricity and                                                                      | l fossil fuel                                                                                                                                             | l used at business sites<br>Ion (business sites in Japan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                                                                 |                | [Calculation formula]                                                                   | Amoun<br>sites x                        | t of purchased ele                                                                       | ectricity x 0                                                                                                                                             | CO <sub>2</sub> emission coefficient + $\Sigma$ [amount of each fuel consumed at business uel x CO <sub>2</sub> emission coefficient of each fuel] + non-energy source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |                                                                 |                |                                                                                         | Non-er<br>greenho     The me<br>Calcula | nergy source greer<br>ouse gas emission<br>ethod for calculatin<br>ting Greenhouse (     | nhouse ga<br>ns<br>ng non-ene<br>Gas Emiss                                                                                                                | is emissions = CO <sub>2</sub> emissions from non-energy sources + non-CO <sub>2</sub> ergy source greenhouse gas emissions is based on the Guidelines for sions from Businesses of Japan's Ministry of the Environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | CO <sub>2</sub> emissions                                       | kilotons CO2e  |                                                                                         | FY1991                                  | ession coefficients]                                                                     | Fuel:                                                                                                                                                     | Based on the Report on Survey of Carbon Dioxide Emissions (Japan's Environment Agency 1992) and the Guideline for Measures to prevent Global Warming (Japan's Environment Agency 1993) Based on the Manual for Calculation and Report of Greenhouse Gas Emissions (latest version every fiscal year, Japan's Ministry of the                                                                                                                                                                                                                                                                                                                                                                            |
|                        | CO2 GITISSIONS                                                  | NIOTOLIS CO2e  |                                                                                         |                                         |                                                                                          |                                                                                                                                                           | Environment and Ministry of Economy, Trade and Industry)<br>v: Data for Japan are effective emission coefficients published by electricity<br>utilities (before reflecting carbon credits)<br>Overseas data are emission coefficients of respective countries<br>published in the Greenhouse Gas Protocol Initiative (Ver. 4.4)<br>CO2 emission coefficients for electricity: The difference between the<br>emitted amount of CO2 calculated using the PY2012 CO2 emission<br>coefficients for electricity in Japan, which are based on the amounts<br>reported by electricity utilities in PY2011, and the emitted amount of CO2<br>calculated using the same CO2 emission coefficients for each year. |
| Energ                  |                                                                 |                | [Calculation scope]                                                                     | <ul> <li>Data ar</li> </ul>             |                                                                                          |                                                                                                                                                           | s data up to FY2011 are for business sites in Japan only<br>nissions from January to December included in non-energy source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Energy and CO2-related | CO <sub>2</sub> emissions per unit of sales                     | %              | [Calculation formula]                                                                   | CO <sub>2</sub> en<br>shown             | nissions per unit of<br>in the graph on pa                                               | f sales for<br>age 47)                                                                                                                                    | total CO <sub>2</sub> emissions / consolidated net sales each fiscal year / FY2010 CO <sub>2</sub> emissions per unit of sales × 100 (as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N N                    | Freight traffic                                                 | million ton-km | [Calculation formula]                                                                   |                                         |                                                                                          |                                                                                                                                                           | ons) × distance traveled (km)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| rela                   |                                                                 |                | [Calculation scope]                                                                     |                                         |                                                                                          |                                                                                                                                                           | and industrial waste discharge) umption during transportation = freight traffic x fuel consumption per ton-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ed                     | CO2 emissions during distribution                               | kilotons CO2e  |                                                                                         | The me and Re Econor                    | han truck<br>ortation<br>ethod of calculation<br>port of Greenhous<br>ny, Trade and Indu | kilometer<br>CO <sub>2</sub> emis:<br>x 44 / 12<br>Fuel cons<br>kilometer<br>CO <sub>2</sub> emis:<br>transporta<br>n is based<br>se Gas Em<br>ustry June | x per-unit heaf value sions = fuel consumption during transportation x CO <sub>2</sub> emission coefficient sumption during transportation = freight traffic x fuel consumption per ton-x per-unit heat value sions = freight traffic x CO <sub>2</sub> emissions per ton-kilometer by means of ation 1 on the ton-kilometer method stipulated under the Manual for Calculation lissions (Ver.3.5) (Japan's Ministry of the Environment and Ministry of 2014)                                                                                                                                                                                                                                           |
|                        | 00                                                              |                | [Calculation scope]                                                                     |                                         |                                                                                          |                                                                                                                                                           | and industrial waste discharge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | CO <sub>2</sub> emissions during distribution per unit of sales | %              | [Calculation formula]                                                                   | <ul> <li>CO<sub>2</sub> en</li> </ul>   |                                                                                          | f sales of e                                                                                                                                              | consolidated net sales each fiscal year / CO <sub>2</sub> emissions per unit of sales in FY2010 x 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                                                                 |                | Supply Chain (Ver. 2                                                                    | 2.1) and the zations the                | e Emissions per U<br>roughout the Supp                                                   | nit Databa                                                                                                                                                | regarding the Calculation of Greenhouse Gas Emissions throughout the ase for the Purpose of Calculating the Greenhouse Gas and Other (Ver. 2.1) (Japan's Ministry of the Environment and Ministry of Economy,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | Scope 3 emissions (disposal and treatment of                    | kilotons CO2e  | Resource extraction, pand transportation for used to generate elect purchased by KUBOT. | fuels<br>tricity                        | [Calculation form                                                                        | per i                                                                                                                                                     | ource extraction, production, etc. of purchased electricity: CO <sub>2</sub> emissions ectricity consumption (amount of purchased electricity) x (CO <sub>2</sub> emissions unit of sales)  chased electricity (Japan and overseas)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | waste; employee business trips)                                 | 141010110 0020 | Disposal of waste ger business sites                                                    | nerated at                              | [Calculation form                                                                        | ula] CO2                                                                                                                                                  | emissions = $\sum$ [(amount of waste discharge by type) x (emissions per unit)] te generated at business sites (Japan and overseas)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                                                                 |                | Employee business tr                                                                    | avels                                   |                                                                                          | ula] CO2                                                                                                                                                  | registrierated at utosiness states (papar and overseas) - emissions = \$\( \text{(transportation expenses paid by mode of transport) x ssions per unit)} \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                 |                | Employee business to                                                                    | avois                                   | [Calculation scop                                                                        | e] The airlin                                                                                                                                             | amount of transportation expenses paid is the portion traveled based on le tickets (domestic and international) and railway tickets (in Japan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        | Amount of waste, etc. discharge                                 | tons           | [Calculation formula]                                                                   | • Sales o                               | f valuable resource                                                                      | es + amou                                                                                                                                                 | unt of waste discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | Amount of waste discharge                                       | tons           | [Calculation formula]                                                                   | Amoun     Amoun                         | t of waste recycled<br>t of industrial wast                                              | d and was<br>te dischar                                                                                                                                   | ste reduction + landfill disposal<br>ge + amount of general waste discharged from business activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Waste-related          | Waste discharge per unit of sales                               | %              | [Calculation formula]                                                                   | • Waste                                 | discharge / consol<br>discharge per unit<br>wn in the graph or                           | of sales o                                                                                                                                                | of each fiscal year / waste discharge per unit of sales in FY2010 x 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| te-n                   | Amount of landfill disposal                                     | tons           | [Calculation formula]                                                                   |                                         |                                                                                          |                                                                                                                                                           | g external intermediate treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| elate                  | Recycling ratio                                                 | %              | [Calculation formula]                                                                   | (Sales of volume)                       | of valuable resource<br>+ amount of lands                                                | ces + exte                                                                                                                                                | rnal recycling volume) ÷ (Sales of valuable resources + external recycling al) x 100 [External recycling volume includes heat recovery]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ğ                      | Amount of construction waste, etc. discharge                    | tons           | [Calculation formula]                                                                   | Amoun<br>materia<br>that but            | t of construction v<br>ls) + sales of valua<br>y valuable material                       | vaste disc<br>able resou                                                                                                                                  | harde (Including construction waste other than specific construction roes (generated from construction) (covers directly contracted companies KUBOTA Group)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | Recycling ratio of                                              | %              | [Calculation scope] [Calculation formula]                                               | • (Sales o                              |                                                                                          |                                                                                                                                                           | urce recycling + amount reduced (including heat recovery)) / amount of (including sales of valuable resources) x 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | construction waste                                              |                |                                                                                         | COLISITU                                | oudii wasie, eic. (                                                                      | uioui iai ye                                                                                                                                              | fill reliability sales of valuable resources) X TOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

- \*1 From FY2014, the KUBOTA Group's accounting policy has changed to reflect in the consolidated financial statements the preliminary results of some consolidated subsidiaries with different ends to their fiscal years. The period covered in the Environmental Report is as stated at the top of page 69.
  \*2 In accordance with changes in the KUBOTA Group's accounting policy (adjusting for fiscal year ends), consolidated net sales from FY2010 to FY2014 have been restated to reflect the new accounting policy. As a result, indicators per unit of sales, which use consolidated net sales in the denominator, and eco-efficiency which uses them in the numerator, have been restated from FY2010 to FY2013.

| Visit consumption   Unit   Calculation formula;   Total amount of service water industrial value and gourdwater consumption   Value consumption   Value consumption of selection of calculation formula;   Value consumption of calculation formula;   Value consumption of calculation for selection   Value consumption   Value consumption   Value consumption   Value consumption   Value consumption   Value consumption   Value     | _            | Y2010 to FY2013.                               |                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------|------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water consumption per unit of sales or consumption per unit of sales or consumption per unit of sales or seven feed year / water consumption per unit of sales for PP2010 x 100 in 100 selection of sales or consumption per unit of sales for PP2010 x 100 in 100 selection of sales or consumption per unit of sales for PP2010 x 100 in 100 selection of sales or consumption per unit of sales for PP2010 x 100 in 100 selection of sales or consumption per unit of sales for PP2010 x 100 in 100 selection of sales or consumption per unit of sales for PP2010 x 100 in 100 selection formula or consumption per unit of sales for per unit of sales fo | E            | · ·                                            | Unit                   |                       | Calculation method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| White consumption per unit of sales for each fiscal year / waster consumption per unit of sales for PYCTIO x 100 is designed to all sales for each fiscal year / waster consumption per unit of sales for PYCTIO x 100 is designed to all sales for each fiscal year / waster consumption per unit of sales for PYCTIO x 100 is designed to all sales for each fiscal year / waster consumption per unit of sales for PYCTIO x 100 is designed to all sales for each fiscal year / waster consumption per unit of sales for PYCTIO x 100 is designed to all sales for each fiscal year / waster consumption per unit of sales for PYCTIO x 100 is designed to sales for each fiscal year / waster consumption per unit of sales for PYCTIO x 100 is designed to sales for each fiscal year / waster consumption per unit of sales for PYCTIO x 100 is an opposite fiscal year / waster consumption per unit of sales for PYCTIO x 100 is an opposite fiscal year / waster consumption per unit of sales for PYCTIO x 100 is an opposite fiscal year / waster consumption per unit of sales for PYCTIO x 100 is an opposite fiscal year / waster consumption per unit of sales for PYCTIO x 100 is an opposite fiscal year / waster consumption per unit of sales fiscal year / waster consumption per unit of sales for PYCTIO x 100 is an opposite fiscal year / waster consumption per unit of sales fiscal year / waster consumption per unit of sales fiscal year / waster waster waster fiscal year / waster / w |              | Water consumption                              | million m <sup>3</sup> | [Calculation formula] | Total amount of service water, industrial water and groundwater consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Amount of PRTP- designated substances handled  Amount of PRTP- designated substances handled  Amount of PRTP- designated substances handled  Calculation formal  Calcu | We           |                                                | %                      | [Calculation formula] | Water consumption per unit of sales for each fiscal year / water consumption per unit of sales for FY2010 x 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Amount of recycled water    Calculation formula    Calculation formu | ter-rela     |                                                | million m <sup>3</sup> | [Calculation formula] | Total wastewater discharge to public water areas and sewage lines (including rain and spring water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Amount of PRTP- designated substances for miles of PRTP- designated substances for provided resource with merisons to the Manual for PRTP designated substances for miles of PRTP- designated substances for provided resource in accordance with merisons to the Manual for PRTP designated substances for provided for miles of the formation of the miles of the formation and the provided resource in accordance with merisons to the Manual for PRTP designated substances for provided for miles of the formation of the fo | ated         |                                                | tons                   | ļ.:                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Amount of PRTR- designated substances handled subst |              | Amount of recycled water                       | million m <sup>3</sup> | [Calculation formula] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Amount of PRTR-   designated substances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | Amount of PRTR-                                |                        | [Calculation formula] | Total amount of chemical substances handled, which are designated as Class I under the Act on Confirmation, etc. of Release Amounts of Specific Chemical Substances in the Environment and Promotion of Improvements to the Management Thereof (the PRTR Law) whose amount handled by each business site is one ton or more (or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Amount of PRTR- designated substances released and transferred for a more (or 0.5 ton or more in case of Specific Case).  The amount of selection of the substances released and transferred for the substances released and transferred for the substances of the subst |              | handled                                        |                        | [Calculation scope]   | After FY2013 data includes designated chemical substances derived from recycled resources in accordance with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Amount of PRITE-designated substances released and transferred per unit of sales    Calculation formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | designated substances                          | tons                   |                       | Law and whose annual total amount handled by each business site is one ton or more (or 0.5 ton or more in case of Specific Class I Designated Chemical Substances).  • Amount released = amount discharged to the atmosphere + amount discharged to public water areas + amount discharged to soil + amount disposed of by landfill in the premises of the business site • Amount transferred – amount discharged to sewerage + amount transferred out of the business site as waste • The amount of each substance released and transferred is calculated in accordance with Manual for PRTR Release Estimation Methods Ver. 4.1 (March 2011) of the Ministry of the Environment and the Ministry of Economy, Trade and Industry, and Manual for PRTR Release Estimation Methods in the Steel Industry Ver. 13 (March 2014) of the Japan Iron and Steel Federation. |
| designated substances released and transferred per unit of sales    Galculation formula    Phit Adesgnated substances released and transferred / consolidated net sales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | A L COOTO                                      |                        | [Calculation scope]   | The same scope of calculation as the amount of PRTR-designated substances handled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Amount of chemical substances handled    Calculation scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | designated substances released and transferred | %                      | [Calculation formula] | <ul> <li>PRTR-designated substances released and transferred per unit of sales of each fiscal year / PRTR-designated<br/>substances released and transferred per unit of sales in FY2010 x 100</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VOC emissions per unit of sales for each fiscal year / VOC emissions per unit of sales in FY2010 x 100 (as shown in the graph on page 52)    Calculation formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                |                        | [Calculation formula] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VOC emissions per unit of sales for each fiscal year / VOC emissions per unit of sales in FY2010 x 100 (as shown in the graph on page 52)   Calculation formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chemical sub |                                                | tons                   | [Calculation scope]   | <ul> <li>The subject laws and regulations are the Toxics Release Inventory (TRI) Program, US EPA, the European Pollutant<br/>Emission Register (EPER), the European Pollutant Release and Transfer Register (E-PRTR), and Reporting to the<br/>National Pollutant Release Inventory (Canada)</li> <li>VOCs are xylene; toluene; ethylbenzene; 1, 2, 4-trimethylbenzene; 1, 3, 5-trimethylbenzene that are at each site</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VOC emissions per unit of sales for each fiscal year / VOC emissions per unit of sales in FY2010 x 100 (as shown in the graph on page 52)    Calculation formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | star         |                                                |                        | [Calculation formula] | • The total emissions of xylene; toluene; ethylbenzene; styrene; 1, 2, 4-trimethylbenzene; 1, 3, 5-trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VOC emissions per unit of sales for each fiscal year / VOC emissions per unit of sales in FY2010 x 100 (as shown in the graph on page 52)    Calculation formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ice-relat    | VOC emissions                                  | tons                   | [Calculation scope]   | • Xylene; toluene; ethylbenzene; styrene; 1, 2, 4-trimethylbenzene; 1, 3, 5-trimethylbenzene that are at each site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SOx emissions  tons    Toling   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100  | l ed         | '                                              | tons                   | [Calculation formula] | VOC emissions per unit of sales for each fiscal year / VOC emissions per unit of sales in FY2010 x 100 (as shown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Control Law.  • From FY2011, the facilities of overseas business sites subject to the law are included  • The smoke and soot generating facilities with burner combustion capacity in fuel oil equivalent of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 200kVA (kilovolt amps).  [Calculation formula]  • NOx concentration (ppm) x 10-6 x amount of gas emitted per hour (m³N/h) x annual operation hours of the relevant facility (h) x 46 / 22.4 x 10-3  • NOx emissions  [Calculation scope]  [Calculation scope]  [Calculation scope]  [Calculation scope]  • For FY2011, the facilities of overseas business sites subject to the law are included  • The smoke and soot generating facilities with burner combustion capacity in fuel oil equivalent of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 50 liters / hour facilities of packets of the law are included  • For FY2010, the smoke and soot generating facilities of business sites in Japan as defined by the Air Pollution Control Law.  • From FY2011, |              | COv emissions                                  | tono                   |                       | / 100] x 10 <sup>-3</sup> , or amount of SÖx emitted per hour (m <sup>3</sup> N/h) x annual operation hours of the relevant facility (h) x 64 / 22.4 x 10 <sup>-3</sup> , or SOx emission concentration (ppm) x annual exhaust gas from facilities (m <sup>3</sup> N/y) x 64 / 22.4 x 10 <sup>-3</sup> , or SOx emission concentration (mg/m <sup>3</sup> N) x annual exhaust gas from facilities (m <sup>3</sup> N/y) x 10 <sup>-6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NOx emissions  tons  [Calculation scope] For FY2010, the smoke and soot generating facilities of business sites in Japan as defined by the Air Pollution Control Law. From FY2011, the facilities of overseas business sites subject to the law are included The smoke and soot generating facilities with burner combustion capacity in fuel oil equivalent of more than 50 litrs / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 200kVA (kilovolt amps).  [Calculation formula] Soot and dust concentration (g/m³N) x amount of gas emitted per hour (m³N/h) x annual operation hours of the relevant facility (h) x 10-6  [Calculation scope] For FY2010, the smoke and soot generating facilities of business sites in Japan as defined by the Air Pollution Control Law. From FY2011, the facilities of overseas business sites subject to the law are included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | SOX emissions                                  | tons                   | [Calculation scope]   | Control Law.  From FY2011, the facilities of overseas business sites subject to the law are included  The smoke and soot generating facilities with burner combustion capacity in fuel oil equivalent of more than 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Control Law.  From PY2011, the facilities of overseas business sites subject to the law are included  The smoke and soot generating facilities with burner combustion capacity in fuel oil equivalent of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 200kVA (kilovolt amps).  [Calculation formula]  Soot and dust emissions  **Control Law.*  Soot and soot generating facilities with burner combustion capacity in fuel oil equivalent of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 200kVA (kilovolt amps).  [Calculation formula]  Soot and dust emissions  **Control Law.*  Soot and dust emissions are included                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                                |                        | 1                     | relevant facility (h) x 46 / 22.4 x 10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Soot and dust emissions  tons  [Calculation scope] For FY2010, the smoke and soot generating facilities of business sites in Japan as defined by the Air Pollution Control Law From FY2011, the facilities of overseas business sites subject to the law are included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | NOx emissions                                  | tons                   | [Calculation scope]   | Control Law.  From FY2011, the facilities of overseas business sites subject to the law are included  The smoke and soot generating facilities with burner combustion capacity in fuel oil equivalent of more than 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Soot and dust emissions tons Control Law.  • From FY2011, the facilities of overseas business sites subject to the law are included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                |                        | [Calculation formula] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The smoke and soot generating facilities with burner combustion capacity in fuel oil equivalent of more than 50 liters / hour (city gas: above 80m³ / hour) or rated capacity of transformers of more than 200kVA (kilovolt amps).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | Soot and dust emissions                        | tons                   | [Calculation scope]   | Control Law.  From FY2011, the facilities of overseas business sites subject to the law are included  The smoke and soot generating facilities with burner combustion capacity in fuel oil equivalent of more than 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CO2 eco-efficiency million¥/ tons CO2e [Calculation formula] • Consolidated net sales / CO2 emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | CO <sub>2</sub> eco-efficiency                 |                        | [Calculation formula] | Consolidated net sales / CO <sub>2</sub> emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Waste eco-efficiency million¥/ hundred kg [Calculation formula] • Consolidated net sales / amount of waste discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | Waste eco-efficiency                           |                        | [Calculation formula] | Consolidated net sales / amount of waste discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Chemical substance eco-efficiency million¥/kg [Calculation formula] • Consolidated net sales / amount of PRTR-designated substances released and transferred by production sites in Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Other        |                                                | million¥/kg            | [Calculation formula] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Green purchasing ratio  [Calculation formula]  • Amount spent to purchase eco-friendly office supplies (paper, stationery, etc.) / total amount spent to purchase items subject to green purchasing x 100  • Green purchasing ratio  • Green purchased through the office supply procurement site operated by Group companies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                |                        | [Calculation formula] | items subject to green purchasing x 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - Great products are north products are not pr |              | Green purchasing ratio                         | %                      | ,                     | Green products are items purchased through the office supply procurement site operated by Group companies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# Third-Party Assurance on Environmental Report

Since FY2005, the KUBOTA Group has received the third-party assurance in order to improve the reliability and comprehensiveness of its environmental data. The Symbol is used to indicate information assured by the third party. Based on the third-party assurance in this fiscal year, its environmental report was accorded the environmental report assurance and registration mark of the Japanese Association of Assurance Organizations for Sustainability Information (J-SUS). This mark\* indicates that the reliability of environmental data presented in the KUBOTA REPORT 2014 - Business and CSR Activities satisfies the requirements for the environmental report assurance and registration marking specified by J-SUS.



KUBOTA REPORT 2014 is published in three languages (Japanese, English and Chinese in online version). The entire online version of the Environmental Report has been verified by a third party.







Sakai Plant, KUBOTA Corporation



### Independent Assurance Report

To the President and Representative Director of Kubota Corporation

We were engaged by Kubota Corporation (the "Company") to undertake a limited assurance engagement of the mental performance indicators marked with "P" for the period from April 1, 2013 to March 31, 2014 (the "Indicators") included in its KUBOTA REPORT 2014 - Business & CSR Activities in the Company's website (the "Website Report") for the fiscal year ended March 31, 2014, and the completeness of material environin the Website Report.

The Company is responsible for the preparation of the Indicators in accordance with its own reporting criteria (the "Company's reporting criteria"), as described in the Website Report, which are derived, among others, from the Sustainability Reporting Guidelines version 3.1 of the Global Reporting Initiative and Environmental Reporting Guidelines of Japan's Ministry of the Environment, and for including the material environmental information defined in the stainability Reporting Assurance and Registration Criteria' of the Japanese Association of Assurance Organizations for Sustainability Information ("J-SUS") in the Report.

### Our Responsibility

Our responsibility is to express a limited assurance conclusion on the Indicators based on the procedures we have performed. We conducted our engagement in accordance with 'International Standard on Assurance Engagements (ISAE) 3000, Assurance Engagements other than Audits or Reviews of Historical Financial Information', 'ISAE 3410, Assurance Engagements on Greenhouse Gas Statements', issued by the International Auditing and Assurance Standards Board, and the 'Practical Guidelines for the Assurance of Sustainability Information' of J-SUS. The limited assurance engagement consisted of making inquiries, primarily of persons responsible for the preparation of information presented in the Report, and applying analytical and other procedures, and the procedures performed vary in nature from, and are less in extent than for, a reasonable assurance engagement. The level of assurance provided is thus not as high as that provided by a reasonable assurance engagement. Our assurance procedures included:

- . Interviewing with the Company's responsible personnel to obtain an understanding of its policy for the preparation of the Report and reviewing the Company's reporting criteria.
- Inquiring about the design of the systems and methods used to collect and process the Indicators
- · Performing analytical reviews of the Indicators.
- · Examining on a test basis, evidence supporting the generation, aggregation and reporting of the Indicators in conformity with the Company's reporting criteria, and also recalculating the Indicators.
- Visiting to the Company's factory selected on the basis of a risk analysis.
- Assessing whether or not all the material environmental information defined by J-SUS is included in the Report.
- Evaluating the overall statement in which the Indicators are expressed.

Based on the procedures performed, as described above, nothing has come to our attention that causes us to believe that the Indicators in the Report are not prepared, in all material respects, in accordance with the Company's reporting criteria as described in the Report, and all the material environmental information defined by J-SUS is not included in the Report.

### Our Independence and Quality Control

We have complied with the Code of Ethics for Professional Accountants issued by the International Ethics Standards Board for Accountants, which includes independence and other requirements founded on fundamental principles of integrity, objectivity, professional competence and due care, confidentiality and professional behavior. In accordance with International Standard on Quality Control 1, we maintain a comprehensive system of quality control including documented policies and procedures regarding compliance with ethical requirements, professional standards and applicable legal and

KPMG AZSA Sustainability Co., Ltd.

KPMG AZSA Sustainability Co., Ltd.

August 29, 2014

# **Third-Party Comments**

Comments on the KUBOTA REPORT 2014 - Business and CSR Activities



Professor Katsuhiko Kokubu. Graduate School of Business Administration. Kobe University

# A Report that Links both the Printed and Online

KUBOTA REPORT 2014 is published in both a printed and online format. The two reports have been edited with specific purposes in mind. In my opinion, KUBOTA has successfully achieved its objectives and published a printed report that focuses on readability and an online report that looks to provide a detailed account of the Company's business and CSR activities. The printed version, in particular, can be commended for striking the right balance between visual design and exhaustive information, including quantitative data of the KUBOTA Group's fundamental activities. I believe that the printed version provides a concise account of the Group's business and sustainability activities and goes a long way toward fulfilling the requirements for integrated reporting set out by the International Integrated Reporting Council. The online version is for the most part structured in the same style as the printed version. In providing a more detailed look at the Group's endeavors, the online version is an excellent tool to enhance the understanding of readers of the printed version.

### Advancing the Basic CSR Management Policy

The KUBOTA Group engages in business activities based on a clearly defined basic CSR management policy. In particular, the Group is to be highly commended for its systematic approach toward CSR management. The KUBOTA Group has taken explicit steps to clarify the relationship between its Corporate Principle and Rules of Conduct, its approach toward CSR through its business activities and as a basis for those business activities, and its efforts to provide value to society. Moreover, the manner in which the Group identifies specific areas where it can provide value on an individual stakeholder basis and the emphasis placed on each stakeholder's perspective are also desirable facets of the Group's basic CSR management policy. Looking ahead, I believe that the KUBOTA Group can further integrate its business activities with the promotion of CSR management by building a framework that coordinates this emphasis on contributing to stakeholders with its business activities and identifying an index to measure the level and quality

### **Promoting Communication with Stakeholders**

As an important communication tool, it is vital that the Group works diligently to ensure that as many stakeholders as possible read the KUBOTA REPORT. In the online version of the report, the KUBOTA Group has outlined its efforts to promote increased awareness toward its Corporate Principles and CSR in general across its worldwide network of bases. The Group is to be lauded for the implementation of an employee CSR awareness survey and its endeavors to wide-ranging CSR-related communication with employees. In the future, I recommend that the Group upgrade and expand these activities to other stakeholders. Communicating with stakeholders is an important means by which the Group can gain an insight into the critical issues that it continues to face. This insight can also be used in an analysis of materiality and I strongly advise that the Group consider this as a future pending issue.

### In response to the above comments

Kunio Suwa, Executive Officer-General Manager of CSR Planning & Coordination Headquarters, KUBOTA Corporation

We have received comments from Professor Kokubu since 2009. KUBOTA would like to thank him for providing his opinion again this fiscal year.

The KUBOTA REPORT 2014 was created with the desire to further enhance communication with our various stakeholders. The printed version was intended to be a gateway for stakeholders relatively unfamiliar with the KUBOTA Group to get a broader understanding of the Group. The online version was intended to be a tool for each stakeholder to get a deeper understanding of areas that pique their interest.

Through its business activities, the Group will redouble efforts to contribute to solving problems related to food, water and the environment, all of which are essential to the survival of the human race. All employees of the Group around the world share the vision of the Kubota Global Identity and set targets in line with their business activities with the aim of building an acclaimed brand everyone trusts.



71 KUBOTA REPORT 2014

# Corporate Data (As of March 31, 2014)

**KUBOTA** Corporation Corporate Name

2-47, Shikitsu-higashi 1-chome, Head Office

Naniwa-ku, Osaka 556-8601

Japan 1890

Capital ¥84.0 billion

Total number of shares issued 1,250,219,180

Number of shareholders 39,117 Revenues (Consolidated) ¥1.508.6 billion

Number of employees

Established

(Consolidated) 33,845



The founder of KUBOTA: Gonshiro Kubota (1870-1959)

# Directors, Audit & Supervisory Board Members and Executive Officers

### Directors



|                  | Director and |
|------------------|--------------|
|                  | Managing Ex  |
| Outside Director | Officer      |

Yukitoshi Funo\* Kenshiro Ogawa

and Executive Vice

Toshihiro Kubo

Kazuhiro Kimura

Masatoshi Kimata

Nobuyuki Ishii

Shigeru Kimura

Managing Executive

Yuichi Kitao

Yuzuru Matsuda\*

### **Executive Officers**

| Executive Officers |
|--------------------|
| Satoshi lida       |
| Yujiro Kimura      |

Shinji Sasaki

Kunio Suwa

Hiroshi Matsuki

Toshihiko Kurosawa

### **Executive Officers** Taichi Ito

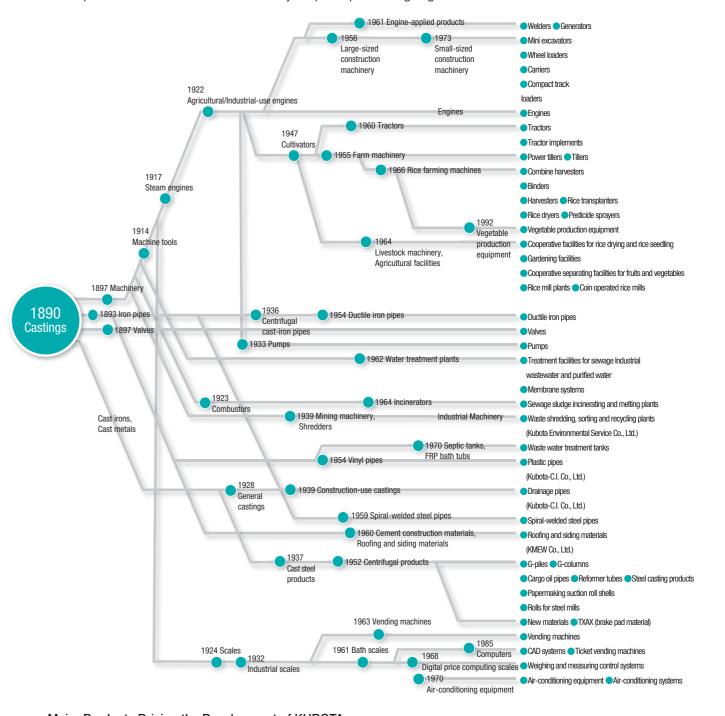
Yoshiyuki Fujita Dai Watanabe Kaoru Hamada Haruyuki Yoshida Hironobu Kubota Takao Shomura Yuji Tomiyama

Junji Ogawa Yasuo Nakata Kazunari Shimokawa

Hiroshi Kawakami Masato Yoshikawa Mutsuo Uchida

### Audit & Supervisory Board Members

Audit & Supervisory Board


Satoru Sakamoto Toshikazu Fukuyama

Outside Audit & Supervisor

Masaharu Kawachi Akira Negishi Ryoji Sato

# History of KUBOTA's products

KUBOTA started with production and marketing of cast metal products. Ever since its foundation, it has provided a large variety of products that contribute to people's lives and society, including iron pipes for waterworks, engines for agricultural and industrial purposes, and machine tools. All of its business organizations and products have been developed under the basic idea that "Society keeps corporations going forward."



### Major Products Driving the Development of KUBOTA









Cast iron pipes for water supply (1893)

Oil-based engines for agro-industrial purpose Cultivators (1947)

Power shovels (1953)

<sup>\*</sup> Designated as independent directors based on the Securities Listing Regulations of the Tokyo Stock Exchange



Mobilizing the collective strength of KUBOTA business activities and contributing to solutions in the areas of food, water and the environment.







used for cutting lawns in parks, office





Construction machinery (mini backhoes):



8 Engines (installed in equipment 1-7);



9 Iron pipes: used in infrastructure, including water and sewage lines, as well as gas piping.



10 Earthquake resistant reservoirs: used to ensure the supply of drinking water when water services are halted due to an earthquake or other disaster





used to pump water in water and sewage lines, as well as in storm water drainage. used in infrastructure, including water and sewage lines, as well as gas piping.



13 Plastic pipes:



14 Ceramic film: sources of water, including river water, to create clean drinking water



Submerged membranes:



16 Waste water treatment tanks:

Farm & Industrial Machinery

Water & Environment



24 TXAX (brake pad material): used as a friction material, mainly in brake pads.



23 Vending machines: used for the automatic sales of products, including drinks and cigarettes.



22 Air-conditioning: used mainly in the centralized air-conditioning of office buildings



2 Truck scales:



20 Cast steel:



used in the rolling process, mainly



(18) Spiral welded steel pipes:



Sewage sludge incinerators:

# Global Network (As of July 1, 2014)

Possessing strengths in world-class quality, the KUBOTA Group is accelerating the development of its overseas business activities, including expanding its production, sales and procurement bases.





### Plants, offices and main affiliates in Japan

### Head offices

**Head Office** 

Hanshin Office

Tokyo Head Office

### ■ Regional offices &

Hokkaido Regional Office

Tohoku Regional Office

Chubu Regional Office

Chugoku Regional Office

Shikoku Regional Office

Kyusyu Regional Office Yokohama Branch

(Yokohama ■ Sales Offices

Wakayama Sales Office Kumamoto Sales Office (Kumamoto)

Okinawa Sales Office

### ■ Factories, plants and husiness centers

Sakai Plant (Sakai, Osaka Prefecture) Agricultural machinery and engines

Hirakata Plant (Hirakata, Osaka Prefecture) Construction machinery, valves,

pumps and steel castings Tsukuba Plant (Tsukubamirai, Ibaraki Prefecture)

Agricultural machinery and engine Ryugasaki Plant (Ryugasaki, Ibaraki Prefecture)

Vending machines Utsunomiva Plant

(Utsunomiya, Tochigi Prefecture) Agricultural machinery

Keiyo Plant Funabashi/Ichikawa, Chiba Prefecture) Ductile iron pipes and spiral welded

steel pipes Shiga Plant (Konan, Shiga Prefecture) Septic tanks

> Hanshin Plant (Amagasaki, Hyogo Prefecture) Ductile iron pipes and mill rolls

Kyuhoji Business Center (Yao, Osaka Prefecture) Electronic equipped machinery

Okajima Business Center Engines and iron castings

15 domestic agricultural machinery sales companies including Hokkaido KUBOTA Corporation (As of July, 2014) Sales of agricultural machinery

Kubota Farm & Industrial Machinery Service Ltd. (Sakai, Osaka Prefecture)

Integrated agricultural machinery service Kubota Agri Japan Corporation (Osaka)

Kubota Credit Co., Ltd. (Osaka)

KUBOTA Precision Machinery Co., Ltd. Manufacture and sale of hydraulic equipment and

other precision machinery component KUBOTA Construction Machinery Japan

Corporation (Amagasaki, Hyogo Pro Sales of construction machinery Kubota-C.I. Co., Ltd. (Osaka)

Manufacturing and sales of pipes and couplings in PVC and other polymers

Nippon Plastic Industry Co., Ltd.

naki Aichi Prefecti

Manufacturing and sales of vinyl pipes and various types of sheets Kubota Environmental Service Co., Ltd (Tokyo)

Operation, maintenance, design, construction, remodeling and repair of water and waste treatment facilities, along with sales of pharmaceutical and other supplies; analysis of water quality, air, waste, etc. KUBOTA KASUI Corporation (Tokyo)

Environmental engineering related to treatment of industrial wastewater and waste gases, repair and remodeling work, maintenance management, chemical and other sales

Kubota Air Conditioner, Ltd. (Tokyo) Manufacturing and sales of various types of airconditioning equipment Kubota Construction Co., Ltd. (Osaka)

Service water and sewage, civil engineering and construction contracting

KMEW Co., Ltd. (Osaka) Manufacturing and sales of roofing and siding materials

### The KUBOTA Group's overseas business sites and main overseas affiliates

# Europe

1 Kubota Europe S.A.S. Argenteuil, FRANCE Sales of tractors, construction machinery.

engines, mowers and UVs\* 2 Kubota (Deutschland) GmbH

Rodgau/Nieder-Roden. GERMANY Sales of tractors, engines, mowers and UVs\*

3 Kubota Baumaschinen GmbH

> Zweibrücken Rheinland-Pfalz. **GERMANY**

Manufacturing and sales of construction machinery

4 Kubota (U.K.) Ltd. Oxfordshire, U.K. Sales of tractors, construction machinery, engines, mowers and UVs\*

**6** Kubota Membrane Europe Ltd. London, U.K. Sales of submerged membranes

6 Kubota España S.A. Madrid, SPAIN Sales of tractors, mowers and UVs\*

Kverneland AS Kvernaland, NORWAY Manufacturing and sales of tractor

# Asia & Oceania

8 Kubota Korea Co., Ltd.

Seoul, KORFA Sales of tractors, combine harvesters, rice transplanters and construction machinery

Subota China Holdings Co., Ltd. Shanghai, CHINA Regional headquarters in China

Mubota Agricultural Machinery (SUZHOU) Co., Ltd.

Jiangsu, CHINA Manufacturing and sales of combine harvesters and other agricultural machinery

M Kubota Construction Machinery (WUXI) Co. Ltd.

Jiangsu, CHINA Manufacturing of construction machinery

Nubota Engine (SHANGHAI) Co., Ltd. Shanghai, CHINA

(B) Kubota Engine (WUXI) Co., Ltd. Jiangsu, CHINA

Manufacturing of vertical type diesel engines Kubota Construction Machinery

(SHANGHAI) Co., Ltd. Shanghai, CHINA es of construction machinery

\*UVs: Utility Vehicles

(5) Kubota Guozhen Environmental Engineering (ANHUI) Co., Ltd.

Anhui, CHINA

Plant engineering of membrane bioreactors, and manufacturing and sales of membrane units, for the water treatment market

(6 KUBOTA SANLIAN PUMP (ANHUI) Co., Ltd.

Anhui, CHINA Manufacturing and sales of pumps

Kubota Environmental Engineering (SHANGHAI) Co., Ltd.

Shanghai, CHINA Plant engineering and sales of equipment for the water treatment market

(B) Jiangsu Biaoxin Kubota Industrial Co., Ltd.

Jiangsu, CHINA Manufacturing and sales of steel casting products

(B) Kubota Rice Industry (H.K.) Co., Ltd. Hona Kona, CHINA

Import, milling and sale of Japanese rice

3 Shin Taiwan Agricultural Machinery Co., Ltd. Kaohsiung City, TAIWAN Sales of tractors, agricultural machinery, mowers, UVs,\*

construction machinery and agriculture-related products

3 Kubota Philippines, Inc.

Quezon City, PHILIPPINES Sales of tractors, combine harvesters rice transplanters, engines, power tillers, etc.

2 SIAM KUBOTA Corporation Co., Ltd.

Pathumthani, THAILAND

Manufacturing and sales of tractors, combine harvesters, horizontal diesel engines and power tillers, and sales of construction machinery

3 SIAM KUBOTA Metal Technology Co., Ltd 9 P. T. Metec Semarang Chachoengsao, THAII AND Manufacturing of casting components for engines and

 KUBOTA Engine (Thailand) Co., Ltd. Chachoengsao, THAILAND Manufacturing of vertical type diesel engines

Siam Kubota Leasing Co., Ltd. Pathumthani, THAII AND Retail financing for tractors and combine harvesters

3 Kubota Procurement & Trading (Thailand) Co., Ltd. Chanthaburi, THAILAND Procurement and supply of parts for KUBOTA Group

 Kubota Vietnam Co., Ltd. Binh Duong Province, VIETNAM Manufacturing and sales of tractors, combine harvesters

and rice transplanters Sime Kubota Sdn. Bhd. Selangor Darul Ehsan, MALAYSIA Sales of tractors and engines

production bases

 Kubota Rice Industry(Singapore)PTE.Ltd. Singapore, SINGAPORE mport, milling and sale of Japanese rice

 P.T. Kubota Indonesia Semarang, INDONESIA

Manufacturing and sales of small diesel engines 3 P.T. Kubota Machinery Indonesia

Jakarta, INDONESIA Sales of tractors, combine harvesters and rice transplanters

Jawa Tengah, INDONESIA Consignment manufacturing of vending machines and vending machine parts

 Kubota Agricultural Machinery India Pvt., Ltd.

> Chennai, INDIA Sales of tractors, combine harvesters and rice transplanters

 Kubota Saudi Arabia Company, LLC Dammam, SAUDI ARABIA Manufacturing and sales of steel casting products

S Kubota Tractor Australia Pty. Ltd. Victoria, AUSTRALIA Sales of tractors, construction machinery engines, mowers and UVs\*

A Beijing Office Beijing, CHINA

B Hanoi Office Hanoi, VIETNAM

Myanmar Office Yangon, M YANMAR Jakarta Office

Jakarta, INDONESIA Malaysia Branch Jaya, Selangor, MALAYSIA

Singapore Branch Singapore, SINGAPORE

**G** Dubai Branch Dubai, UNITED ARAB EMIRATES

# North America

**3** Kubota Tractor Corporation California, U.S.A. Sales of tractors, construction machinery, mowers and UVs\*

3 Kubota Credit Corporation U.S.A. California, U.S.A.

Retail financing of sales contracts Kubota Manufacturing of America Corporation

Georgia, U.S.A. Development and manufacturing of small-sized tractors, mowers, UVs\* and tractor implements

Kubota Industrial Equipment Corporation Georgia, U.S.A.

Development and manufacturing of tractors and implements M Kubota Engine America Corporation

Sales of engines and generators M Kubota Insurance Corporation

Illinois, U.S.A.

California, U.S.A. Kubota Tractor Acceptance Corporation

California, U.S.A. Business of insurance agencies in the United States

(3) Kubota Membrane U.S.A. Corporation Washington, U.S.A. Sales of submerged membranes

Kubota Canada Ltd. Ontario, CANADA

Sales of tractors, construction machinery, engines, mowers and UVs\* (5) Kubota Materials Canada Corporation

Ontario CANADA Manufacturing and sales of steel casting products, TXAX (brake