Consolidated Balance Sheets

Assets					(In millions of yen)
		March 3	31, 2013	March 3	31, 2012	Change
		Amount	%	Amount	%	Amount
Current assets	Cash and cash equivalents	110,535		100,559		9,976
	Notes and accounts receivable:					
	Trade notes	73,236		71,713		1,523
	Trade accounts	404,775		321,451		83,324
	Less: Allowance for doubtful notes and accounts receivable	(2,504)		(2,404)		(100)
	Total notes and accounts receivable, net	475,507		390,760		84,747
	Short-term finance receivables-net	130,694		108,160		22,534
	Inventories	231,488		202,070		29,418
	Other current assets	66,451		64,463		1,988
	Total current assets	1,014,675	58.2	866,012	58.2	148,663
Investments and long-term finance receivables	Investments in and loan receivables from affiliated companies	19,276		17,971		1,305
	Other investments	126,679		101,705		24,974
	Long-term finance receivables-net	249,135		204,272		44,863
	Total investments and long-term finance receivables	395,090	22.7	323,948	21.8	71,142
Property, plant and	Land	90,870		89,529		1,341
equipment	Buildings	237,639		226,598		11,041
	Machinery and equipment	386,052		361,433		24,619
	Construction in progress	16,291		8,079		8,212
	Total	730,852		685,639		45,213
	Accumulated depreciation	(475,326)		(460,572)		(14,754)
	Net property, plant and equipment	255,526	14.6	225,067	15.1	30,459
Other assets	Goodwill and intangible assets	28,902		26,904		1,998
	Long-term trade accounts receivable	32,009		31,409		600
	Other	18,122		15,204		2,918
	Less: Allowance for doubtful receivables	(654)		(875)		221
	Total other assets	78,379	4.5	72,642	4.9	5,737
Total		1,743,670	100.0	1,487,669	100.0	256,001

Liabilities and equity

Elabilities and equ	uity				(In millions of yen)
		March 3	1, 2013	March 3	31, 2012	Change
		Amount	%	Amount	%	Amount
Current liabilities	Short-term borrowings	118,860		69,623		49,237
	Trade notes payable	20,926		16,905		4,021
	Trade accounts payable	222,101		199,072		23,029
	Advances received from customers	10,142		6,983		3,159
	Notes and accounts payable for capital	10 770		10.017		0.000
	expenditures	16,779		13,817		2,962
	Accrued payroll costs	32,840		30,830		2,010
	Accrued expenses	38,037		33,617		4,420
	Income taxes payable	17,385		16,449		936
	Other current liabilities	49,489		41,477		8,012
	Current portion of long-term debt	68,297		107,210		(38,913)
	Total current liabilities	594,856	34.1	535,983	36.0	58,873
Long-term liabilities	Long-term debt	273,360		184,402		88,958
	Accrued retirement and pension costs	28,752		41,882		(13,130)
	Other long-term liabilities	36,094		18,188		17,906
	Total long-term liabilities	338,206	19.4	244,472	16.4	93,734
Equity	Kubota Corporation shareholders' equity:					
	Common stock	84,070		84,070		_
	Capital surplus	88,866		88,834		32
	Legal reserve	19,539		19,539		—
	Retained earnings	595,145		560,710		34,435
	Accumulated other comprehensive loss	(28,889)		(80,542)		51,653
	Treasury stock	(216)		(19,328)		19,112
	Total Kubota Corporation shareholders'					
	equity	758,515	43.5	653,283	43.9	105,232
	Noncontrolling interests	52,093	3.0	53,931	3.7	(1,838)
	Total equity	810,608	46.5	707,214	47.6	103,394
Total		1,743,670	100.0	1,487,669	100.0	256,001

Consolidated Statements of Income

	Year ended M	arch 31, 2013	Year ended M	arch 31, 2012	Cha	nge
	Amount	Amount % Amount		%	Amount	%
Revenues	1,167,628	100.0	1,008,019	100.0	159,609	15.8
Cost of revenues	848,149	72.6	735,836	73.0	112,313	15.3
Selling, general and administrative expenses	206,479	17.7	170,252	16.9	36,227	21.3
Other operating expenses (income)	(161)	(0.0)	(3,749)	(0.4)	3,588	_
Operating income	113,161	9.7	105,680	10.5	7,481	7.1
Other income (expenses):						
Interest and dividend income	3,614		3,760		(146)	
Interest expense	(1,280)		(1,892)		612	
Gain on sales of securities-net	160		105		55	
Valuation loss on other investments	(360)		(2,570)		2,210	
Foreign exchange gain (loss)-net	9,266		(7,609)		16,875	
Other, net	(4,098)		3,464		(7,562)	
Other income (expenses), net	7,302		(4,742)		12,044	
Income before income taxes and equity in net income of affiliated companies	120,463	10.3	100,938	10.0	19,525	19.3
Income taxes:						
Current	39,961		35,594		4,367	
Deferred	779		954		(175)	
Total income taxes	40,740		36,548		4,192	
Equity in net income of affiliated companies	1,426		1,629		(203)	
Net income	81,149	6.9	66,019	6.5	15,130	22.9
Less: Net income attributable to the noncontrolling interests	7,461		4,467		2,994	
Net income attributable to Kubota Corporation	73,688	6.3	61,552	6.1	12,136	19.7

Consolidated Statements of Comprehensive Income

	I		(In millions of yen)
	Year ended March 31, 2013	Year ended March 31, 2012	Change
Net income	81,149	66,019	15,130
Other comprehensive income (loss), net of tax:			
Foreign currency translation adjustments	38,214	(13,359)	51,573
Unrealized gains on securities	16,200	3,220	12,980
Unrealized gains on derivatives	195	538	(343)
Pension liability adjustments	6,012	(8,361)	14,373
Total other comprehensive income (loss)	60,621	(17,962)	78,583
Comprehensive income	141,770	48,057	93,713
Less: Comprehensive income attributable to the noncontrolling interests	13,579	1,622	11,957
Comprehensive income attributable to Kubota Corporation	128,191	46,435	81,756

Consolidated Statements of Changes in Equity

	monto		ngco ii	Lquity				(In m	nillions of yen)
	Shares of			Sharehold	ers' Equity				
	common stock outstanding (thousands)	Common stock	Capital surplus	Legal reserve	Retained earnings	Accumulated other comprehensive loss	Treasury stock	Noncontrolling interests	Total
Balance, March 31, 2011	1,271,713	84,070	89,140	19,539	516,858	(65,381)	(9,341)	46,476	681,361
Net income					61,552			4,467	66,019
Other comprehensive loss						(15,117)		(2,845)	(17,962)
Cash dividends paid to Kubota Corporation shareholders, ¥14 per common share Cash dividends paid to the noncontrolling interests					(17,700)			(291)	(17,700) (291)
Purchases and sales of treasury stock	(15,729)						(9,987)		(9,987)
Increase in noncontrolling interests related to contribution								73	73
Changes in ownership interests in subsidiaries			(306)			(44)		6,051	5,701
Balance, March 31, 2012	1,255,984	84,070	88,834	19,539	560,710	(80,542)	(19,328)	53,931	707,214
Net income					73,688			7,461	81,149
Other comprehensive loss						54,503		6,118	60,621
Cash dividends paid to Kubota Corporation shareholders, ¥16 per common share					(20,102)				(20,102)
Cash dividends paid to the noncontrolling interests								(402)	(402)
Purchases and sales of treasury stock	(67)						(40)		(40)
Retirement of treasury stock			(1)		(19,151)		19,152		_
Increase in noncontrolling interests related to contribution								301	301
Changes in ownership interests in subsidiaries			33			(2,850)		(15,316)	(18,133)
Balance, March 31, 2013	1,255,917	84,070	88,866	19,539	595,145	(28,889)	(216)	52,093	810,608

32	2-	2

(In millions of yen)

Economic Supplementary Report Information

 \leq

Consolidated Statements of Cash Flows

	10110	1	(In millions of yer
	Year ended March 31, 2013	Year ended March 31, 2012	Change
Operating activities:			
Net income	81,149	66,019	
Depreciation and amortization	29,254	23,908	
Gain on sales of securities, net	(160)	(105)	
Valuation loss on other investments	360	2,570	
(Gain) loss from disposal of fixed asset-net	828	(6,693)	
Impairment loss on long-lived assets	296	1,531	
Equity in net income of affiliated companies	(1,426)	(1,629)	
Deferred income taxes	779	954	
Increase in notes and accounts receivable	(69,084)	(39,833)	
Increase in inventories	(11,243)	(16,176)	
Increase in other current assets	(772)	(8,355)	
Increase in trade notes and accounts payable	18,824	43,189	
Increase (decrease) in income taxes payable	(1,820)	11,670	
Increase in other current liabilities	9,699	11,519	
Decrease in accrued retirement and pension costs	(4,331)	(8,870)	
Other	(1,369)	197	
let cash provided by operating activities	50,984	79,896	(28,912)
nvesting activities:			
Purchases of fixed assets	(46,650)	(26,962)	
Proceeds from sales of property, plant and equipment	1,072	13,028	
Proceeds from sales and redemption of investments	418	187	
Acquisition of business, net of cash acquired	642	(17,211)	
Increase in finance receivables	(188,449)	(167,040)	
Collection of finance receivables	160,894	135,319	
Net (increase) decrease in short-term loan receivables from affiliated			
companies	1,680	(5,565)	
Net (increase) decrease in time deposit	2,219	(2,080)	
Other	(1,071)	395	
let cash used in investing activities	(69,245)	(69,929)	684
inancing activities:			
Proceeds from issuance of long-term debt	148,582	104,816	
Repayments of long-term debt	(114,632)	(89,203)	
Net increase in short-term borrowings	26,001	9	
Cash dividends	(20,102)	(17,700)	
Purchases of treasury stock	(40)	(10,016)	
Purchases of noncontrolling interests	(18,062)	(924)	
Other	(92)	(246)	
let cash provided by (used in) financing activities	21,655	(13,264)	34,919
iffect of exchange rate changes on cash and cash equivalents	6,582	(1,437)	8,019
let increase (decrease) in cash and cash equivalents	9,976	(4,734)	
Cash and cash equivalents, beginning of year	100,559	105,293	
Cash and cash equivalents, end of year	110,535	100,559	9,976

Notes

			(In millions of yen)
Cash paid during the year for:			
Interest	5,642	4,732	910
Income taxes	37,876	20,515	17,361

Consolidated Segment Information

Reporting segments Year ended March 31, 2013

					(in minorio or yori)
	Farm & Industrial Machinery	Water & Environment	Other	Adjustments	Consolidated
Revenues:					
External customers	850,953	282,078	34,597	_	1,167,628
Intersegment	59	5,461	22,030	(27,550)	—
Total	851,012	287,539	56,627	(27,550)	1,167,628
Operating income	107,967	23,533	2,464	(20,803)	113,161
Identifiable assets at March 31, 2013	1,244,886	258,869	75,790	164,125	1,743,670
Depreciation	20,123	6,214	737	2,179	29,253
Capital expenditures	37,222	7,658	744	3,102	48,726

Year ended March 31, 2012

	Farm & Industrial Machinery	Water & Environment
Revenues:		
External customers	713,943	263,286
Intersegment	69	4,839
Total	714,012	268,125
Operating income	97,776	17,480
Identifiable assets at March 31, 2012	1,039,280	246,272
Depreciation	14,582	6,574
Capital expenditures	20,077	6,076

Revenues from external customers by product groups

		(In millions of yen)
	Year ended March 31, 2013	Year ended March 31, 2012
Farm Equipment and Engines	744,319	619,989
Construction Machinery	106,634	93,954
Farm & Industrial Machinery	850,953	713,943
Pipe-related Products	151,058	142,466
Environment-related Products	64,827	56,045
Social Infrastructure- related Products	66,193	64,775
Water & Environment	282,078	263,286
Other	34,597	30,790
Total	1,167,628	1,008,019

Geographic information

Information for revenues from external customers by destination

		(In millions of yen)
	Year ended March 31, 2013	Year ended March 31, 2012
Japan	540,982	498,684
North America	263,246	219,929
Europe	118,744	88,715
Asia outside Japan	204,172	169,632
Other Areas	40,484	31,059
Total	1,167,628	1,008,019

Information for property, plant and equipment based on physical location (In millions of yen)

	March 31, 2013	March 31, 2012
Japan	178,680	176,987
North America	22,892	15,158
Europe	14,057	9,580
Asia outside Japan	36,005	20,087
Other Areas	3,892	3,255
Total	255,526	225,067

http://www.kubota-global.net/ir/financial/sec/index.html

(In millions of yen)

(In	mil	lions	of	y

		(In millions of yen)
Other Adjustments		Consolidated
30,790	—	1,008,019
18,010	(22,918)	_
48,800	(22,918)	1,008,019
2,450	(12,026)	105,680
49,530	152,587	1,487,669
705	2,000	23,861
1,071	3,888	31,112

Л

Status of ISO9001 Certification (As of April 1, 2013)

In 1993, the Hirakata Plant became the first business site of the KUBOTA Group to obtain ISO9001 international quality assurance certification, which was quickly followed by other sites and affiliates within the Group. By promoting the quality management program based on ISO9001, KUBOTA is committed to earning customer trust and delivering satisfying, high-quality products.

Department Office

Department Office		Main product(s)	Date of certification	Certifying body		
Form 9	Sakai (Inc Okajima) Rinkai		Sakai (Including Okajima) Rinkai	Engines, tractors, farm equipment, and construction machinery	1994.06	LRQA
industrial	machinery, (Construction	Tsukuba	Engines and tractors	1994.06	LRQA
machinery	machinery		Utsunomiya	Transplanters and harvesting equipment	1997.02	LRQA
			Hirakata	Construction machinery	1996.04	LRQA
		Ductile iron pipe	Hanshin Keiyo	Ductile iron pipe, fittings, accessories and related products	1999.01	JCQA
		Valves	Hirakata	Valves and gates	1994.09	LRQA
-	Pipe system	Pipe system Industrial materials		Casting products	1998.05	JICQA
		Pumps	Hirakata	Pumps, pump station, and sewage & water purification plants	1997.10	LRQA
	Water engineering & solution	Water and sewage engineering		Tokyo	Sewage & sludge treatment, water purification and waste water treatment	1997.10
Water & environment		engineering & solution Membrane systems		Hanshin Office	Membrane module and anaerobic MBR technology	1997.10
		Johkasou	Shiga	Purified water tank made by plastic	2003.04	JUSE
	Materials	Materials (Steel castings, Roll, New material)	Hirakata Amagasaki	Rollers, tubes, piping, fittings, spools, columns, piles, sleeves, cylinders, and static castings, rolling mill roll and non-metal mineral product (titanic acid compounds)	1993.03	LRQA
		Steel pipe	Keiyo	Spiral welded steel pipe	1998.07	JICQA
	Electronic	Vending machinery	Ryugasaki	Vending machines for cigarette, paper packed and canned beverage	2008.09	DNV
	equipped machinery	Precision equipment	Kyuhoji	Electronic weighing equipment and load cell	1994.08	DNV

Key to the abbreviation of certifying bodies

LRQA : Lloyd's Register Quality Assurance Ltd.

JCQA : Japan Chemical Quality Assurance Ltd.

JICQA : JIC Quality Assurance Ltd.

JUSE : Union of Japanese Scientists and Engineers

DNV : DNV Business Assurance Japan K.K.

Affiliates in Japan

Affiliated companies	Scope of certification	Date of certification	Certifying body
KUBOTA Precision Machinery Co., Ltd.	Design, development and manufacture of hydraulic valves, hydraulic cylinders for agricultural and construction machines. Manufacture of hydrostatic transmissions, hydraulic pumps for off road vehicles and agricultural machines, and hydraulic motor for construction machines.	2007.04	LRQA
KUBOTA-C.I. Co., Ltd.	Design, development, and manufacture, of vinyl pipes, polyethylene pipes, fittings and various kinds of attachments	1998.04	JUSE
Nihon Plastic Industry Co., Ltd.	 Design, development, and manufacture of vinyl pipe and secondary processed products Design, development, and manufacture of polyethylene and other plastic pipes Design, development, and manufacture of polystyrene/ polyethylene and other plastic sheet plates 	1998.12	JSA
KUBOTA Pipe Tech Co.	 Design, construction and construction management of various pipelines, etc. Investigation and diagnosis of pipelines Training on installation of fittings and pipe laying 	2002.03	JCQA
Water Technology Institute Ltd.	 Design and development of packaged software supporting for water supply business. Provision of operation support services for packaged software supporting for water supply business and its date entry services. Provision of survey and consulting services for water supply analysis 	2004.04	JCQA
KUBOTA Environmental Service Co., Ltd.	Design, construction, maintenance, and servicing of plants for water supply systems, sewerage systems, debris landfill, night-soil treatment, and solid waste disposal	2000.02	MSA
KUBOTA KASUI Corporation	Design and construction of environmental conservation plants	2000.01	BCJ-SAR
KUBOTA Air Conditioner Co., Ltd.	Design, development, manufacturing, and ancillary services for large-scale air-conditioning equipment	2000.02	JQA
KUBOTA Systems, Inc.	 Consigned development of software products and software packages, design, development, and manufacturing of network structures and ancillary services. Operation service of information systems and operation and maintenance of networks Sale of purchased products 	1997.05	BSI-J
Heiwa Kanzai Co., Ltd.	Design, development, and supply of cleaning services for buildings and facilities	2002.07	JICQA
Kubota Construction Co.,Ltd.	Design and construction of civil engineering structure and buildings	2011.12	JQA
Key to the abbreviation of certifying be	odies		

LRQA : Lloyd's Register Quality Assurance Ltd.

JUSE : Union of Japanese Scientists and Engineers

JSA : Japanese Standards Association

JCQA : Japan Chemical Quality Assurance Ltd.

MSA : Management System Assessment Center

Business sites with certification under OHSAS18001 (Occupational Health and Safety Management Systems) (as of April 1, 2013)

Tsukuba Plant	Certification obtained in December	Hanshin Plant (Mukogawa)	Certification obtained in November
	2000		2003
Keiyo Plant (Funabashi)	Certification obtained in December	Hanshin Plant (Amagasaki)	Certification obtained in April 2005
	2002		
Keiyo Plant (Ichikawa)	Certification obtained in December	Hirakata Plant	Certification obtained in June
	2002		2007

* Occupational health and safety management systems centering on risk assessment have also been established in other business sites.

Supplementary Data

: The Building Center of Japan
: Japan Quality Assurance Organization
: BSI Group Japan K.K.
: JIC Quality Assurance Ltd.

Promoting Environmental Management

The KUBOTA Group has identified the three objectives of "Stop climate change," "Work towards a recycling-based society" and "Control chemical substances" as a part of efforts to map out its basic direction of corporate environment management. In order to achieve these objectives, the Group is endeavoring to reduce the environmental loads associated with its production activities and to enhance the environmental friendliness of its products (see pages 45-50). As the foundation for these endeavors, we are striving to bolster our environmental management system.

Environmental management promotion system

The KUBOTA Group is promoting its environmental management, which is based on the environmental management system, through an organizational structure in which the Board of Directors serves as the highest decision-making body.

Organizational structure

KUBOTA Group environmental management system

*KEDES: Kubota Ecology Data E-System

Environmental management

Based on rules established by the KUBOTA Group, every effort is being made to create environmental management systems and energize activities at each business site. With the globalization of its business in recent years, the Group is endeavoring to build environmental management systems that also include its overseas business sites, promote the acquisition of ISO 14001 certification, and upgrade and expand environmental education activities. Moreover, the KUBOTA Group is working to further enhance environmental awareness and raise the level of environmental conservation activities.

Environmental auditing

Each year environmental audits are conducted by the KUBOTA Environmental Protection Department, based on the internal control system of the KUBOTA Group.

Audits in FY2013 were conducted by means of paper audits and field audits with factors that have the potential to cause environmental accidents listed as priority checklist items, focusing on production sites, service sites, offices and construction departments in Japan as well as overseas production sites.

Also, at production sites in Japan and overseas, in addition to environmental audits conducted by the Environmental Protection Department, internal environmental audits are also implemented by the staff of each site with the aim of raising the level of environmental management.

Audit of overseas production site (Kubota Manufacturing of America Corporation)

Drills for responding to abnormal and emergency situations

The KUBOTA Group is making efforts to identify and minimize the environmental risks associated with its business activities. It carries out regular training based on the procedures established to respond to specific risks at each site to mitigate the impact on the ambient environment in case of an environmental accident.

Drainage outlet blockage training (KUBOTA Construction Machinery Japan Corporation, SANKO KUBOTA KENKI CO., LTD.)

FY2013 Environmental audit implementation status [Number of subject sites and departments] 173 sites and departments

[Number of audit items]

83 items (for production sites)

[Audit details]

- Environmental management system
- Water & Air guality management
- Noise & Vibration management
- Waste material & Chemical substance management
- Climate change prevention
- Response to abnormalities and emergencies

Audit of business site in Japan (Shin-yodogawa Environmental Plant Center)

Effluent recovery training (KUBOTA Air Conditioner Ltd.)

	ment		
-	Economic Report		
	Social Report		
	Report	Environmental	
	Information	Supplementar	

Environmental education

The KUBOTA Group conducted training sessions targeting each job class in order to stimulate awareness toward environmental issues and promote widespread understanding of environmental management. In addition, the Environmental Protection Department is taking the lead in conducting specialized education in such fields as pollution prevention technology and energy conservation while training ISO environmental auditors as a part of efforts to ensure the steadfast practice of environmental conservation. Moreover, individual and tailor-made environmental education activities are being conducted at each business site and Group company. Our energies are also being channeled toward cooperating with the environmental education activities of external organizations.

Results of environmental education in FY2013

Classification	Course title	Frequency	No. of participants	Course descriptions
	Training for new recruits	3	150	Regional and global environmental issues as well as environmental conservation activities
	CSR training (Employees of "creative" personnel who have worked for nine years)	3	158	Environmental issues and environmental risk management
Education by employee-level	Training for employees promoted to managerial positions	3	129	The KUBOTA Group's environmental management
	Training for newly appointed foremen	1	11	On-site environmental management and the role and responsibilities of foremen
	Training for newly appointed supervisors	2	55	On-site environmental management and the role and responsibilities of supervisors
	Basics of environmental management education	1	10	Basic knowledge on environmental management
	Pollution prevention technology education	1	9	Pollution control laws and pollution control technology
	Energy saving technology education	1	9	Energy saving laws, energy saving technology
	Waste management education	2	39	Waste Management and Public Cleansing Law, practical training in consignment contracts and manifests, etc.
Professional	Education to train ISO 14001 environmental auditors	2	32	The ISO 14001 standard, environment-related laws, audit techniques
education	Training aimed at raising the skill levels of ISO 14001 environmental auditors	8	96	On-site audit perspectives and the identification of non-compliance
	General education for ISO 14001 environmental auditors (China)	1	28	Internal audit procedures and improvement measures
	Environmental management technology education for production engineers	1	11	Pollution prevention technology and environmental risk management, energy saving technology
	Waste information management system education	4	26	Waste disposal consignment contract and manifest management
	Education regarding the management of products containing chemical substances	1	104	Trends in environment-related laws and regulations including REACH
	Total	34	867	

Support to education in	Japanese Association of Metal, Machinery and	- 1	10	Hanshin Plant environmental conservation
outside organizations	Manufacturing Workers (JAM)	1	10	initiatives

Training in connection with the management of products containing chemical substances (Kyuhoji Business Center)

Basic education for ISO 14001 environmental auditors (Kubota Agricultural Machinery (SUZHOU))

Status of environmental management system certification acquisition (ISO 14001 and EMAS)

All of the KUBOTA Group's production sites in Japan were awarded ISO 14001 certification by the end of FY2007. Currently, efforts to obtain ISO 14001 and other certifications are underway at its overseas production sites. In FY2013, two sites in the U.S. and two in Thailand acquired ISO 14001 certification. One site in Germany also acquired EMAS certification.

[I] ISO 14001 Certification

ΚI	IRO	ТΑ	in	.la	nan	
110	D_{U}	17 1		υu	pan	

No	Name	Other included organizations and subsidiaries	Main business	Inspecting/ Certifying organ	Date of certification
1	Tsukuba Plant	Eastern Main Parts Center KUBOTA F.I.M. Service Ltd. KS Tsukuba Training Center Kanto Kubota Precision Machinery Co.,Ltd.	Engines, tractors, etc.	LRQA	November 28, 1997
2	Keiyo Plant	Distribution Center	Ductile iron pipes, spiral welded steel pipes	LRQA	July 16, 1998
3	Ryugasaki Plant	 KUBOTA Vending Service Co., Ltd. Ryugasaki Plant KUBOTA Kanto Vender Center Inc. Ryugasaki Plant 	Vending machines	DNV	November 13, 1998
4	Hanshin Plant	Marushima Factory	Ductile iron pipes, rolls, potassium titanate	LRQA	March 5, 1999
5	Kyuhoji Business Center	 KUBOTA Environmental Service Co., Ltd KUBOTA Membrane Corp. KUBOTA Keiso Corp. 	Measuring instruments, measuring systems, CAD systems, rice-milling products, waste shredder systems, submerged membranes, and mold temperature controllers	DNV	March 19, 1999
6	Hirakata Plant		Valves, cast steel, new ceramic materials, and construction machinery	LRQA	September 17, 1999
7	Okajima Business Center		Industrial cast iron products, drainage pipes, and other cast iron products	JICQA	December 22, 1999
8	Sakai Plant/Sakai Rinkai Plant		Engines, tractors, small-size construction machinery, etc.	LRQA	March 10, 2000
9	Shiga Plant		FRP products	JUSE	May 18, 2000
10	Water Engineering & Solution Business Unit	Shin-yodogawa Environmental Plant Center	Sewage & sludge water purification, waste water treatment facilities	LRQA	July 14, 2000
11	Pumps Business Unit	KUBOTA Kiko Ltd.	Sewage & water purification plants, pumps and pump stations	LRQA	July 14, 2000
12	Water Engineering & Solution Business Unit (membrane filtration system)		Filtration membrane unit	LRQA	July 14, 2000
13	Utsunomiya Plant	KUBOTA F.I.M. Service Ltd. KS Utsunomiya Training Center	Rice transplanters and combine harvesters	LRQA	December 8, 2000

KUBOTA Group: Companies in Japan

No	Name	Other included organizations and subsidiaries	Main business	Inspecting/ Certifying organ	Date of certification
1	Nippon Plastic Industry Co., Ltd.	 Head office and plant, Mino Plant 	Plastic pipes, plastic sheets, etc.	JSA	October 27, 2000
2	KUBOTA Construction Co., Ltd.		Design and construction of civil engineering structures and buildings	JQA	December 22, 2000
3	KUBOTA Environmental Service Co., Ltd.		Installation, maintenance and management of environmental systems for service water, sewage, landfill disposal, raw waste and waste plants, etc.	MSA	November 20, 2002
4	KUBOTA-C.I. Co., Ltd.	 Tochigi Plant Sakai Plant Odawara Plant Kyushu KUBOTA Chemical Co., Ltd. 	Plastic pipes and couplings	JUSE	March 27, 2003 (integrated authentication in 2011)
5	KUBOTA Air Conditioner Co., Ltd.	Tochigi Plant	Central air conditioning systems	JQA	August 27, 2004
6	KUBOTA Pipe Tech Co.		Design, construction, installation and management of pipelines	JCQA	January 24, 2005
7	KUBOTA Precision Machinery Co., Ltd.		Hydraulic valves, hydraulic cylinders, transmissions, hydraulic pumps, hydraulic motors, etc.	LRQA	March 17, 2007
8	KUBOTA KASUI Corporation		Design, construction and maintenance management of environmental conservation facilities	BCJ	February 1, 2010

■ KUBOTA Group: Overseas companies

No	Name	Main business	Inspecting/ Certifying organ	Date of certification
1	SIAM KUBOTA Corporation Co., Ltd. (Navanakorn, Thailand)	Small diesel engines and agricultural machinery	MASCI	February 28, 2003
2	P.T. Kubota Indonesia(Indonesia)	Diesel engines and agricultural machinery	LRQA	February 10, 2006
3	Kubota Materials Canada Corporation (Canada)	Cast steel products	SGS (U.S.)	June 15, 2006
4	P.T.Metec Semarang (Indonesia)	Vending Machines	TÜV	March 16, 2011
5	Kubota Precision Machinery (Thailand) Co., Ltd. (Thailand)	Equipment for tractors	SGS	August 27, 2012
6	Kubota Manufacturing of America Corporation (U.S.)	Small-sized tractors, mowers, Utility Vehicles and tractor implements	BSI	September 20, 2012
7	SIAM KUBOTA Corporation Co., Ltd. (Amata Nakorn, Thailand)	Tractors and combine harvesters	BV	September 27, 2012
8	Kubota Industrial Equipment Corporation (U.S.)	Tractor implements and tractors	DEKRA	November 28, 2012
9	KUBOTA SANLIAN PUMP (ANHUI) Co., Ltd. (China)	Pumps	CCSC	May 29, 2013
LRQ/ DNV JICQ JUSE JSA JQA MSA JCQ/ BCJ	 A : Lloyd's Register Quality Assurance Limited (U.K.) : DNV Certification B.V. (Netherlands) A : JIC Quality Assurance Ltd. (Japan) : Union of Japanese Scientists and Engineers ISO Center : Japanese Standards Association : Japan Quality Assurance Organization : Management System Assessment Center (Japan) A : Japan Chemical Quality Assurance Ltd. : The Building Center of Japan 	on Institute (Thai n, a Division of many) J.K.)) ting SAS—UK B tification Compa	and) SGS North America Inc. ranch (U.K.) ıny (China)	

[II] EMAS certification

KUBOTA Group: Overseas companies						
No	Name					
1	Kubota Baumaschinen GmbH (Germany)	Constructio				

IHK: Industrie- und Handelskammer für die Pfalz (Germany)

Main business	Inspecting/ Certifying organ	Date of certification
n Machinery IHł	HK	January 3, 2013

Trends in Major Environmental Indicators

Medium-term environmental conservation plan / Management indicators (KPI)

Issues	Actions	Management Indicators ^{*1}	Units	FY2009	FY2010	FY2011	FY2012	FY2013
	Reduce CO ₂	CO2 emissions per unit of sales	tons CO _{2e} / billion¥	520	513	477	464	492
Stopping climate change		CO2 emissions	kilotons CO _{2e}	575	478	445	468	575
	Reduce CO ₂ during distribution ^{*2}	CO2 emissions per unit of sales	tons CO _{2e} / billion¥	41.3	41.8	41.4	40.0	37.6
		Waste discharge per unit of sales	tons/billion¥	85.0	79.8	75.0	77.6	76.8
Working towards a recycling-based society	Reduce waste	Ratio of business sites that have achieved zero emissions	%	36.7	46.7	50.0	39.4	41.0
	Conserve water resources	Water consumption per unit of sales	m ³ /million¥	4.60	5.01	4.53	4.42	3.85
Controlling chemical	Reduce PRTR-designated substances ^{*2}	Release & transfer per unit of sales	kg/billion¥	717	714	546	495	479
substances	Reduce chemical substances in products	Ratio of models with reduced RoHS- designated substances	%	24.1	24.2	22.2	28.0	36.0
*1 Per unit data refers to th	Per unit data refers to the value of environmental impact divided by consolidated net sales *2 Data for business sites in Japan							

Indicators listed in the overview of environmental loads (P48) \sum

		Enviror	nmental indica	tors	Unit	FY2009	FY2010	FY2011	FY2012	FY2013
		Total energy in	nput		TJ	10.510	9.050	9.060	9.480	11.010
			Fossil fuel		TJ	4,060	3,550	3,360	3,560	4,060
			Purchased el	ectricity	MWh	589,330	503,400	523,500	543,100	642,400
			Transportatio	n fuel (business sites in Japan)	TJ	671	561	564	587	641
INPUT		Water consur	nption		million m ³	5.09	4.66	4.23	4.45	4.50
				Overseas business sites included in the above	million m ³	0.49	0.40	0.44	0.52	0.83
			Service water		million m ³	1.03	0.93	0.86	0.87	1.03
			Water for indu	ustrial use	million m ³	2.97	2.69	2.36	2.56	2.46
			Groundwater		million m ³	1.09	1.04	1.01	1.02	1.01
		Amount of PF (business site	RTR-designate s in Japan)	d substances handled	tons	6,621	5,507	5,277	5,321	5,667
		Amount of ch (overseas bus	emical substa siness sites)	nces handled	tons			2,667	4,488	4,138
	Atmospheric discharge	CO ₂ emission	S		kilotons CO _{2e}	575	478	445	468	575
				Overseas business sites included in the above	kilotons CO _{2e}	73	64	70	90	125
			Energy sourc	es	kilotons CO _{2e}	566	470	439	462	569
			Other than th	e above	kilotons CO _{2e}	9	8	6	6	6
		Distribution C	O2 (business s	ites in Japan)	kilotons CO _{2e}	46	39	39	40	44
		SOx emission	is ^{*1}		tons	3.9	3.8	5.2	2.9	6.6
		NOx emission	IS ^{*1}		tons	60.3	49.5	66.1	61.7	64.3
		Soot and dus	t emissions ^{*1}		tons	5.6	3.8	5.5	6.4	5.7
		Amount of PRTR-designated substances released (business sites in Japan) VOC (included in the above) Amount of chemical substances released (overseas business sites)		tons	574	475	389	384	422	
				VOC (included in the above)	tons	574	475	389	384	422
				nces released (overseas business sites)	tons	_	_	81	119	211
				VOC (included in the above)	tons	-	-	-	119	175
OUTPUT			Wastewater of	lischarge	million m ³	4.48	3.86	3.78	3.82	3.48
			COD*2 (busin	ess sites in Japan)	tons	11.7	9.5	10.6	11.9	10.4
		Public water	Nitrogen disc (business site	harge ^{*2} s in Japan)	tons	13.9	9.7	9.5	10.2	9.7
	Water system	aicas	Phosphorous (business site	discharge ^{*2} s in Japan)	tons	0.36	0.25	0.35	0.29	0.30
			Amount of PF (business site	RTR-designated substances released s in Japan)	kg	40	33	35	40	9.0
			Wastewater of	lischarge	million m ³	0.90	0.99	0.94	1.01	1.34
		Sewage lines	Amount of PF (business site	RTR-designated substances released is in Japan)	kg	48	20	21	20	20
		Amount of wa	aste discharge		kilotons	94.1	74.3	70.0	78.2	89.7
	Waste			Overseas business sites included in the above	kilotons	3.9	9.9	10.2	14.5	25.4
	VVasie		Landfill waste		kilotons	10.2	3.9	4.3	4.1	7.2
		Amount of co (business site	nstruction was s in Japan)	ste, etc. discharge	kilotons	26.2	21.5	18.9	32.7	31.8

*1 Data for overseas business sites is included from FY2011 onwards. *2 Data for total discharge from business sites subject to total emission control.

 Eco-efficiency indicator for CO₂ = Consolidated net sales (million¥) / CO₂ emissions (tons CO_{2n}) Eco-efficiency indicator for waste = Consolidated net sales (million¥) / Waste discharge (hundred kg) Eco-efficiency indicator for chemical substances =Consolidated net sales (million¥) / The amount of PRTR-designated substances released and transferred (kg) (business sites in Japan)

The eco-efficiency indicators for the amount of waste discharge recorded and the amount of PRTR-designated substances released and transferred improved from the previous fiscal year. Meanwhile, the eco-efficiency indicator for CO2 declined owing mainly to the increase in the electric power CO2 emission coefficient resulting from the suspension of operations at nuclear power generation plants in Japan.

How to read the indicators

The improvement of the indicators means that the sales per unit of environmental load have increased, which is considered to indicate higher eco-efficiency.

The Ratio of Environmental Management Group Company Coverage

All the consolidated subsidiaries in Japan and overseas have been subject to environmental management since FY2010.

-O- CO2 emissions during distribution per unit of sales (compared to FY2009)

* CO2 emissions during distribution per unit of sales = CO2 emissions during distribution / Consolidated net sales

- * The scope of business emissions as defined in the Greenhouse Gas (GHG) Protocol
- Scope 1: Direct GHG emissions from businesses themselves
- Scope 2: Indirect emissions associated with the consumption of electric power, heat, and steam supplied by others
- Scope 3: Indirect emissions other than scope 2 (others emissions related to business activities)

Data Concerning Resource Recycling

The data are supplementary information about "Working towards a Recycling-based Society" on P49 of KUBOTA REPORT 2013.

Amount of waste, etc. discharge by treatment category (FY2013 results)

Trends in ratio of business sites that have achieved zero emissions, and recycling ratio

- Ratio of business sites that have achieved zero emissions "

*1 Recycling ratio (excluding volume reduction) (%) = (Sales of valuable resources + resource recycling) / (Waste, etc. discharge - Volume reduction in intermediate treatment by outside contractors) x 100 The resource recycling does not include heat recovery. The volume of reduction in intermediate treatment conducted by outside contractors refers to reduction through dehydration, incineration, etc.

*2 The FY2012 recycling ratio (overseas) has been adjusted in order to improve accuracy *3 The ratio of business sites that have achieved zero emissions is calculated using the number of KUBOTA Group production sites as a denominator

(FY2009-FY2011: 30 sites, FY2012: 33 sites, FY2013:39 sites)

Total water consumption by region

Chemical Substance-Related Data

This is supplementary information for P50 "Controlling Chemical Substances" in KUBOTA REPORT 2013.

PRTR-designated substances and VOCs (FY2013 results) Results of PRTR reporting (Production sites in Japan)

				U	nit: kg/year	(Dioxins:	mg-TEQ/year)
Number			Releases	Transfrts			
in Cabinet Order	Chemical substance	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site
1	Water-soluble zinc compounds	0.0	9.0	0.0	0.0	20	1,322
53	Ethylbenzene	106,517	0.0	0.0	0.0	0.0	21,475
71	Ferric chloride	0.0	0.0	0.0	0.0	0.0	0.0
80	Xylene	169,039	0.0	0.0	0.0	0.0	34,921
87	Chromium and chromium (III) compounds	0.0	0.0	0.0	0.0	0.0	3,871
132	Cobalt and its compounds	0.0	0.0	0.0	0.0	0.0	3.3
188	N,N-Dicyclohexylamine	0.0	0.0	0.0	0.0	0.0	1,205
239	Organic tin compounds	0.0	0.0	0.0	0.0	0.0	12
240	Styrene	21,831	0.0	0.0	0.0	0.0	0.0
243	Dioxins	0.095	0.0	0.0	0.0	0.0	0.860
277	Triethylamine	0.0	0.0	0.0	0.0	0.0	0.0
296	1, 2, 4-trimethylbenzene	8,487	0.0	0.0	0.0	0.0	6,603
297	1, 3, 5-trimethylbenzene	2,148	0.0	0.0	0.0	0.0	30
300	Toluene	111,211	0.0	0.0	0.0	0.0	19,174
302	Naphthalene	2,647	0.0	0.0	0.0	0.0	0.0
305	Lead compounds	5.8	0.0	0.0	0.0	0.0	14,792
308	Nickel	1.2	0.0	0.0	0.0	0.0	447
309	Nickel compounds	0.0	0.0	0.0	0.0	0.0	843
349	Phenol	0.0	0.0	0.0	0.0	0.0	0.0
354	Di-n-butyl phthalate	0.0	0.0	0.0	0.0	0.0	185
392	n-Hexane	0.0	0.0	0.0	0.0	0.0	0.0
400	Benzene	2.1	0.0	0.0	0.0	0.0	0.0
405	Boron compounds	0.0	0.0	0.0	0.0	0.0	1,546
411	Formaldehyde	283	0.0	0.0	0.0	0.0	0.0
412	Manganese and its compounds	0.0	0.0	0.0	0.0	0.0	30,327
438	Methylnaphthalene	13.1	0.0	0.0	0.0	0.0	0.0
448	Methylenebis (4, 1-phenylene) diisocyanate	0.0	0.0	0.0	0.0	0.0	0.0
453	Molybdenum and its compounds	0.0	0.0	0.0	0.0	0.0	0.0
	Total	422,185	9.0	0.0	0.0	20	136,756

* The annual total amount handled by each production site in Japan is calculated with regard to one ton or more (or 0.5 ton or more in case of Specific Class I Designated Chemical Substances). :Volatile Organic Compound (VOC)

Groundwater monitoring (FY2013)

Results of groundwater measurements conducted on the premises of the business sites that used organic chlorine-based compounds in the past are as shown below.

Business site	Substance	Measured groundwater value	Environmental standard
Tsukuba Plant	Trichloroethylene Non detected (Less than 0.0001mg/L)		Less than 0.03 mg/L
Utsunomiya Plant	Trichloroethylene	Non detected (Less than 0.001mg/L)	Less than 0.03 mg/L

Controlling chemical substances contained in products

Reduction of chemical substances contained in products

EU's RoHS Directive^{*1} and ELV Directive, and similar laws and regulations in other countries and regions, are targeted at electrical and electronic equipment and/or automobiles. Although most of the industrial machinery provided by the KUBOTA Group is not included in the scope of these regulations as of 2013, the Group has promoted proactive measures to systematically reduce the use of the six RoHS-designated substances: lead, mercury, cadmium, hexavalent chromium, PBB and PBDE.

The ratio of models with reduced RoHS-designated substances*2 in FY2013 stood at 36.0%, failing to reach the preset target of 40%. However, progress is being made on the use of alternatives on a component unit basis.

Trends in the ratio of models with reduced **RoHS-designated substances**

50-7

(FY2013 results)

Total waste

discharge

89.7

kilotons

discharge by type (FY2013 results)

Glass, concrete, pottery waste 2%

Total waste

discharge

89.7

kilotons

- Europe 2%

- Japan

72%

4%

Amount of construction waste, etc. discharge " - Recycling rate (Specific construction materials) Are Recycling rate (Including construction waste other than specific construction materials) "1."2

*1 The FY2012 amount of construction waste, etc. discharge and recycling ratio have been adjusted in order to improve accuracy.

*2 Recycling rate =[sales of valuable resources + resource recycling + volume reduction (heat recovery)]/ amount of construction waste, etc. discharge (including sales of valuable resources) x 100 (%)

Trends in the amount construction waste, etc. discharge and recycling ratio (Business sites in Japan) (kilotons

Pape

Waste oil 3%

Waste

scrap 3%

waste 4%

acid 5%

Soot and dust 6%

scrap 6%

Sludge 11%

Wood

Response to regulations related to chemical substances

As a response to the REACH Regulation^{*3} and other regulations related to chemical substances, the KUBOTA Group has established and enforced rules to identify the chemical substances contained in its products and ensure their appropriate control. Since FY2011, the Group has categorized chemicals contained in products into the three control levels listed below. The Group also undertakes researches on chemicals contained in products on a global basis, with support from its suppliers.

- Control levels -

- 1. Substances to be Prohibited; Should not be contained in products
- 2. Substances to be Restricted; Should not be contained in products under certain conditions and applications
- 3. Substances to be Controlled; Their presence in products should be recognized
- *1 RoHS Directive: EU's Directive for Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment
- *2 Ratio of the value of shipped products that contain RoHS-designated substances (lead, hexavalent chromium, mercury, cadmium, PBB and PBDE) in amounts equal to or less than the threshold limits (except products used for applications exempted from the RoHS Directive and ELV Directive) against the total value of products shipped in FY2013 (excluding plants, facilities, construction, services and software evelopment).
- *3 REACH Regulation: EU's Regulation for Registration, Evaluation, Authorisation and Restriction of Chemicals

Enviro

Environmental Accounting

The KUBOTA Group takes steps to ascertain the costs undertaken to protect the environment as well as their effect on a quantitative basis.

Environmental conservation costs \wp

					(ren in millions)		
Oleasifications	N Anton and think	FY2	FY2012		013		
Classifications	IVIAIN ACTIVITIES	Investment	Expenses	Investment	Expenses		
Within the business area cost		654	1,423	722	1,424		
Local environmental conservation cost	Prevention of air and water pollution, soil contamination, noise, vibration, etc.	273	524	160	393		
Global environmental conservation cost	Prevention of climate change	287	171	453	217		
Resource recycling cost	Minimizing waste production, reducing quantity of waste, and recycling	94	728	109	814		
Upstream and downstream costs	Collection of used products and commercialization of recycled products	0	21	0	24		
Management activities cost	Environmental management personnel, ISO maintenance and implementation, environmental information dissemination	12	1,304	4	1,225		
R&D cost	R&D for reducing of product environmental load and developing environment conservation equipment	743	5,088	339	5,262		
Social activities cost	Local cleanup activities and membership fees and contributions to environmental groups, etc.	0	1	0	1		
Environmental remediation cost	Contributions and impositions, etc.	0	203	0	200		
Total		1,409	8,040	1,065	8,136		
Total capital investment (including	land) for the corresponding period (consolidated data)				48,700		
Total R&D costs for the correspon	Total RBD costs for the corresponding period				31.200		

Environmental conservation effects

Effects	Items	FY2012	FY2013
Environmental effect related to	Energy consumption (Except for transportation fuel) [units of heat; in terajoules (TJ)]	7,270	7,660
resources input into business activities	Water consumption (million m ³)	3.94	3.67
	CO2 emissions (Energy related) (kilotons CO2)	373	444
	SOx emissions (tons)	2.5	4.1
Environmental effect related to waste	NOx emissions (tons)	56.1	58.0
or environmental impact originating	Soot and dust emissions (tons)	3.8	3.5
from business activities	Releases and transfers of PRTR-designated substances (tons)	499	559
	Waste discharge (kilotons)	63.8	64.3
	Waste to landfills (kilotons)	0.9	1.0

Economic effects 🔑

		(Yen in millions)
Classifications	Details	Annual effects
Energy conservation measures	Reduce waste including standby electricity by visualizing energy use; increase the efficiency of compressor and boiler energy consumption; other	515
	Improve loading and distribution efficiency; other	19
Zere emissions massives	Reduce the amount of industrial waste; promote resource recycling; other	11
Zero-emissions measures	Sales of valuable resources	836
THE R A		1

<Environmental accounting principles>

1) The period covered spans from April 1, 2012 to March 31, 2013.

2) The data of business sites in Japan are considered in the calculation

3) Data was calculated referring to the Environmental Accounting Guidelines 2005, published by Japan's Ministry of the Environment.

4) "Expenses" includes depreciation costs. Depreciation cost was calculated based on the standards applied to KUBOTA's financial accounting, and assets acquired in and

- after 1998 were considered in the calculation. "Management activities" and "R&D costs" include personnel expenses
- "Resource recycling costs" does not include costs incurred during disposal of construction waste at construction sites

"R&D costs" represents that which was spent on environmental purposes, calculated on a pro-rata basis.

5) "Economic effects" is obtained only by adding up tangible results and does not include estimated effects. 6) The amount of R&D cost expenditure in FY2012 has been revised to enhance accuracy.

Green Procurement

For the purpose of providing products that are friendly to the global and local environment, the KUBOTA Group is seeking to procure products with reduced environmental impacts from eco-friendly suppliers.

In order to effectively promote eco-friendly sourcing activities, the Group presents its policy for green procurement in the KUBOTA Group's Green Procurement Guidelines, to request the understanding and cooperation of suppliers.

Please refer to _____http://www.kubota-global.net/environment/procure.html for details regarding the KUBOTA Group Green Procurement Guidelines.

Green Purchasing

The KUBOTA Group is promoting the purchase of "green" office supplies (paper, stationery, etc.). In FY2013, the ratio of the amount spent on green products to total purchasing amount was 76.0%.

* From FY2010 onwards, the target items of green purchasing were changed

Conservation of Biodiversity

Conservation of biodiversity is set as one of the targets for the KUBOTA Group's "Eco-First Commitment." In its business activities and social contribution initiatives, the Group endeavoring to ensure that care is taken to conserve biodiversity and protect the natural environment.

olodu	N/holo
KUBOTA Smot Green Proturement Guidelines (nar 4)	Bubstances of Concern Liet
April (1971) 10.461/10. (segmentation	April 2/0 Kill (14. Departure

KUBOTA Group's Green Procurement Guidelines and Appendix

Amount spent on green products and the ratio to total purchasing amount (Business sites in Japan) \wp

In each stage of business activities, the KUBOTA Group reduces environmental loads and consider its

	Output (environmental loads)		Impact on biodiversity											
	CO ₂ emissions,		(Issues to be considered)											
	wastewater, waste, noise, etc.	-	Excessive consumption											
, wa	ter bodies and soil		of habitats due to climate change or pollution, transfer of exotic species											
eduo sys	duces environmental impacts of its business activities, and contribute systems.													
	CO2 emissions, exhaust gas, was	te, no	sise, vibration, etc.											
5	Water treatment business (conserving ecosystems function and low-emission engine	vatio by ri s; im	n of water bodies), agricultural machinery ce transplanters with a pesticide-reduction proving agricultural crop yields)											
the	e KUBOTA Group devotes efforts	s to p	preserving the natural environment.											
			5											

KUBOTA Group Production Sites Data (results of FY2013)

Data on KUBOTA production sites in Japan

Item		Business	site Hansh	iin Plant (Mukoga Marushima)	wa, H	Hanshin Plant (A	(magasaki)	Keiyo Plant (Funaba	shi, Distribution Center)	Keiyo Plan	t (Ichikawa)	Hirakat	a Plant	Okajima I	Business Cente		Sakai Plant	I.	Sakai Rink	kai Plant	Utsun	omiya Plant	Tsuku	oa Plant	Kyuhoji Busin	ness Center *4	Ryugasa	ki Plant *4	Shiga	l Plant
INPUT																														
		Unit	Volume	of use He convers	t on GJ Volu	ume of use	Heat onversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of us	e Heat conversior	GJ Volume of	use conve	Heat version GJ	Volume of use	Heat conversion GJ	Volume of us	e Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ
Fnerav	Fossil fuel	Crude o equivalen	il 16,	511 63	,961	5,758	223,170	23,092	895,031	86	3,320	5,705	221,124	5,226	202,5	53 4,15	3 16	60,984	2,932	113,661	1,296	50,238	5,750	222,870	240	9,302	250	9,684	690	26,732
Energy	Purchased el	lectricity MWh	42,0	095 41	,277	32,600	325,024	46,523	453,960	4,675	46,612	46,513	454,625	40,328	391,4	30 35,43	1 34	45,762	16,494	160,794	5,737	56,667	46,472	452,902	2,309	22,658	3,488	34,776	2,251	22,445
	То	otal Crude o equivalen	il 27,	148 1,05	,238	14,143	548,194	34,804	1,348,991	1,288	49,932	17,434	675,749	15,325	593,9	83 13,07	4 50	606,746	7,081	274,455	2,758	106,905	17,435	675,772	825	31,960	1,147	44,460	1,269	49,177
Wator usago		thousand	m ³	754		011			150	1	1	1	76		00		199		5/	1		110	0	1/	1	1		2	(0
														2																
CO ₂ emission	CO ₂ emission	ns from tons CC	2e	71,925		25,81	5	100),212	2,3	381	32,	377	3	7,736		25,230		14,5	546	5	5,539	34	001	1,5	549	2,	111	2,	346
Waste	Discharge an	nount tons		10,526		5,271		18	,415	14	42	3,9	975	1	5,995		1,286		70	12		313	2,	943	14	41	1	20	1	31
	Recycling rat	10 %		99.6		99.8		9	9.9	95	9.9	10	0.0		100.0		99.7		100).0		98.9	9	1.8	95	1.5	9	9.2	9	.4
	Main smoke	and soot generating facili	ies*2	Nelting furnaces		Heating furr	naces	Melting	furnaces			Heating	furnaces	Melti	ig furnaces	Dr	/ing furnace	es			E	Boilers	Bo	ilers			Bo	ilers	Bo	ilers
		Unit	Control content	Control Mea	surement Co	ntrol Contro ntent value	Measurement	t Control Co content v	alue Measuremen	t		Control Cor content val	ntrol Measuremen	t Control (Control Measu	ement Control content	Control value	Measurement			Control C content	Vontrol Measureme	t Control Co content v	ntrol Measuremer	t		Control Co content va	ntrol Measurement	Control Co content va	ntrol lue Measurement
F 1	SOx	Total emission control a K-value control: m ³ N/	nd K-value control	0.22 0	002 ^L	Use of town gas sulfur con	s with zero tent	Total emission 1 control	9.3 0.349	No smoke and	soot generating	Use of town sulfur o	gas with zero content	Total emission control	2.859 0.0	5 Total emission control	1.477	0.145	No smoke and s	soot generating	Use of tow sulfu	n gas with zero ir content	K-value control 1	7.5 0	No smoke and	soot generating	Use of town sulfur	gas with zero content	Use of town sulfur	gas with zero content
Exnaust gas '	NOx	Total emission control: m ² Concentration control: p	N/h, pm Total emission control	24.32	.46 emi	Total dission 2.24	0.052	Total emission 4 control	1.4 2.31	faci	lities	Total emission 1.1 control	89 0.062	Total emission control	2.4 0.4	0 Total emission control	1.535	0.34	facilit	ties	Concentration control	150 25	Concentration control 2	30 100	facil	lities	Concentration 2	30 60	Concentration 1	80 35
	Soot and dust	Concentration control: g/	m ³ N Concentratio	ⁿ 0.1 0	Conce co	ontrol 0.1	0.0016	Concentration control (0.1 0.0021			Concentration control O	.1 0.005	Concentration control	0.05 0.0	2 Concentration control	0.1	0.025			Concentration control	0.1 0.001	Concentration control O	25 0.01	1		Concentration control C	Less 1.2 than 0.01	_	
*1 Total emi	ission contr	rol: Control value (ind	luding agre	ed value) by	olant or fa	acility and th	e measure	ement value.	K-value contr	ol and concer	ntration contro	ol: Control val	ue (including	agreed val	ue) of major	smoke and	soot gene	erating fa	acilities and the	e measurem	ient value (n	naximum value	e).							

 *2 Smoke and soot generating facilities: Those subject to the laws concerning emissions into the atmosphere.

			Unit	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement
	p	Hc	Minimum value, Maximum value	5.8~8.6	6.9, 7.6	_	_	5.0~9.0	6.8, 7.8	5.0~9.0	6.5, 7.6	5.8~8.6	7.1, 7.3	_	—	—	_	5.8~8.6	6.4, 7.7	5.8~8.6	7.1, 7.6	5.8~8.6	7.3, 7.7	_	—	—	—	6.0~8.5	7.6, 8.0
	E	BOD	mg/L	30	6	_	-	_	-	60	_	25	4.3	—	_	—	-	30	19.0	25	11.6	20	4.6	—	_	_	—	30	6.6
	C	COD	mg/L	20	6	_	_	20	6.4	60	13.8	25	5.1	_	_	_	-	30	19.5	_	_	20	7.2	_	_	_	—	30	7.6
	Pub	Nitrogen	mg/L	120	7.5	_	_	20	3.72	70	16.3	120	5.9	—	_	_	_	120	54.7	_	_	60	8.5	_	_	_	_	12	0.7
	DIIC F	Phosphorus	mg/L	16	0.2	_	_	2	0.05	7	1.9	16	0.39	—	_	—	-	16	3.78	_	_	8	1.0	—	—	_	—	1.2	Non-detected
	⊢ vate	Hexavalent chromium	mg/L	0.35	Non-detected	_	_	0.05	Non-detected	_	_	0.05	Non-detected	—	_	_	_	0.5	Non-detected	_	_	0.5	Non-detected	_	_	_	_	0.05	Non-detected
Drai	er ar	Lead	mg/L	0.1	Non-detected	_	_	0.1	Non-detected	0.1	Non-detected	0.01	Non-detected	—	_	_	_	0.1	Non-detected	_	_	0.1	0.01	_	_	_	_	0.1	Non-detected
nage	eas C	COD, total emission control	kg/day	97.44	13.2	_	_	110.5	12.3	4.0	0.44	38.0	2.11	_	-	_	_	3.30	0.89	_	_	_	_	_	_	_	_	_	_
ω	N to	Nitrogen, total emission control	kg/day	40.51	15.2	_	_	114.7	7.3	2.865	0.48	38.3	2.58	_	—	_	-	13.20	2.10	_	_	_	_	_	_	_	—	_	_
	F	Phosphorus, total emission control	kg/day	1.424	0.5	—	_	11.65	0.08	0.391	0.052	4.4	0.20	_	—	—	-	1.76	0.06	—	_	—	_	_	_	_	—	_	_
	Sewe	Hc	Minimum value, Maximum value	5.7~8.7	6.6, 8.1	5.7~8.7	6.8, 7.9	_	_	_	_	_	_	5.7~8.7	6.8, 7.2	5.7~8.7	7.2, 7.4	_	_	_	_	—	_	5.7~8.7	6.8, 7.6	5~9	6.2, 7.0	_	_
	erag	BOD	mg/L	300	8	300	11	_		—	_	_		600	64	300	180	_	_	_	_	_	_	300	7	600	58	_	_
	e li	COD	mg/L	_	_	_	_	_		_	_	_		_	_	_	110	_	_	_	_	_	_	_	_	_	_	_	_
	nes s	SS	mg/L	300	4	300	24	_	_	_	_	_	_	600	8	300	14	_	-	_	_	_	_	300	8	600	35	_	_

*3 Total emission control: Control value (including agreed value) by plant and the measurement value. Concentration control: Control value (including agreed value) by plant and the measurement value (maximum value). *4 Includes Group company data within the same site.

Results of PRTR Reporting (Unit: kg/year)

Duning site				neleasel	amount		Indusiene	u amount
Business site	Substance name	Cabinet Order No.	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site
	Ethylbenzene	53	7,086	0.0	0.0	0.0	0.0	61
	Xylene	80	9,907	0.0	0.0	0.0	0.0	90
	Triethylamine	277	0.0	0.0	0.0	0.0	0.0	0.0
	1, 2, 4-trimethylbenzene	296	2,969	0.0	0.0	0.0	0.0	0.0
Hanshin Plant	Toluene	300	12,272	0.0	0.0	0.0	0.0	1,547
(Mukogawa)	lead compounds	305	0.0	0.0	0.0	0.0	0.0	8,001
	Nickel	308	0.0	0.0	0.0	0.0	0.0	223
F	Phenol	349	0.0	0.0	0.0	0.0	0.0	0.0
	Methylenebis (4,1-phenylene) diisocyanate	448	0.0	0.0	0.0	0.0	0.0	0.0
	Ethylbenzene	53	11,277	0.0	0.0	0.0	0.0	8.0
Hanshin Plant	Xylene	80	28,640	0.0	0.0	0.0	0.0	11
(Marushima)	Toluene	300	28,316	0.0	0.0	0.0	0.0	199
	Nickel	308	0.0	0.0	0.0	0.0	0.0	189
	Chromium and Chromium (III) compounds	87	0.0	0.0	0.0	0.0	0.0	312
	Toluene	300	2,036	0.0	0.0	0.0	0.0	0.0
	Nickel	308	1.2	0.0	0.0	0.0	0.0	0.35
(Amagasaki)	Boron compounds	405	0.0	0.0	0.0	0.0	0.0	1,540
,	Manganese and its compounds	412	0.0	0.0	0.0	0.0	0.0	9,516
	Molybdenum and its compounds	453	0.0	0.0	0.0	0.0	0.0	0.0

				neleasel	amount		Transierre	d amount
Business site	Substance name	Cabinet Order No.	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site
	Ethylbenzene	53	19,648	0.0	0.0	0.0	0.0	332
	Xylene	80	30,276	0.0	0.0	0.0	0.0	494
	Triethylamine	277	0.0	0.0	0.0	0.0	0.0	0.0
	1, 2, 4-trimethylbenzene	296	1,872	0.0	0.0	0.0	0.0	8.0
	Toluene	300	52,121	0.0	0.0	0.0	0.0	793
Kaina Diant	lead compounds	305	0.0	0.0	0.0	0.0	0.0	6,320
(Funabashi)	Nickel	308	0.0	0.0	0.0	0.0	0.0	26
	Phenol	349	0.0	0.0	0.0	0.0	0.0	0.0
	Di-n-butyl phthalate	354	0.0	0.0	0.0	0.0	0.0	116
	Manganese and its compounds	412	0.0	0.0	0.0	0.0	0.0	14,072
	Methylenebis (4,1-phenylene) diisocyanate	448	0.0	0.0	0.0	0.0	0.0	0.0
Koivo Plant	Ethylbenzene	53	6,294	0.0	0.0	0.0	0.0	129
Keiyo Plant (Distribution)	Xylene	80	22,018	0.0	0.0	0.0	0.0	449
Genter)	Toluene	300	7,893	0.0	0.0	0.0	0.0	161
Keiyo Plant (Ichikawa)	Manganese and its compounds	412	0.0	0.0	0.0	0.0	0.0	0.0
	Ethylbenzene	53	1,319	0.0	0.0	0.0	0.0	17,335
	Xylene	80	2,114	0.0	0.0	0.0	0.0	26,584
	Chromium and Chromium (III) compounds	87	0.0	0.0	0.0	0.0	0.0	2,505
	Cobalt and its compounds	132	0.0	0.0	0.0	0.0	0.0	3.3
	1, 2, 4-trimethylbenzene	296	165	0.0	0.0	0.0	0.0	2,213
Hirakata Plant	Toluene	300	1,327	0.0	0.0	0.0	0.0	15,122
	Nickel	308	0.0	0.0	0.0	0.0	0.0	8.1
	Boron compounds	405	0.0	0.0	0.0	0.0	0.0	6.5
	Manganese and its compounds	412	0.0	0.0	0.0	0.0	0.0	4,871
	Molybdenum and its compounds	453	0.0	0.0	0.0	0.0	0.0	0.0

				Released	d amount		Transferre	d amount		
Business site	Substance name	Substance name Cabine to Order No. Atmosphere areas Public wrater areas Soil On- land ium and Chromium (III) unds 87 0.0 0.0 0.0 0.0 0.0 armine 277 0.0 0.0 0.0 0.0 0.0 trimethylbenzene 296 2,771 0.0 0.0 0.0 0.0 trimethylbenzene 297 831 0.0 0.0 0.0 0.0 immethylbenzene 297 831 0.0 0.0 0.0 0.0 immethylbenzene 297 831 0.0 0.0 0.0 0.0 immethylbenzene 297 831 0.0 0.0 0.0 0.0 indes and its 412 0.0 0.0 0.0 0.0 0 anate 1 0.0 0.0 0.0 0 0 0 anate 297 215 0.0 0.0 0 0 0 enesolo 3	On-site landfills	Sewerage	Transfers to off-site	Bu	isiness			
	Chromium and Chromium (III) compounds	87	0.0	0.0	0.0	0.0	0.0	1,054		
	Triethylamine	277	0.0	0.0	0.0	0.0	0.0	0.0		
	1, 2, 4-trimethylbenzene	296	2,771	0.0	0.0	0.0	0.0	0.0		
	1, 3, 5-trimethylbenzene	297	831	0.0	0.0	0.0	0.0	0.0		
Okajima Rusinoss	Nickel	308	0.0	0.0	0.0	0.0	0.0	0.0		
Center	Phenol	349	0.0	0.0	0.0	0.0	0.0	0.0	Tsu	ukuba P
	Formaldehyde	411	283	0.0	0.0	0.0	0.0	0.0		
	Manganese and its compounds	412	0.0	0.0	0.0	0.0	0.0	1,612		
	Methylenebis (4,1-phenylene) diisocyanate	448	0.0	0.0	0.0	0.0	0.0	0.0		
	Water-soluble zinc compounds	1	0.0	0.0	0.0	0.0	20	0.0		
	Ethylbenzene	53	3,174	0.0	0.0	0.0	0.0	223	Ð	KUBC
Sakai Plant	Xylene	80	4,679	0.0	0.0	0.0	0.0	383	/uga	141100
	1, 2, 4-trimethylbenzene	296	308	0.0	0.0	0.0	0.0	22	saki	Co., L
	1, 3, 5-trimethylbenzene	297	215	0.0	0.0	0.0	0.0	7.6	Plan	
	Toluene	300	1,399	0.0	0.0	0.0	0.0	101	=	Cente
	Ethylbenzene	53	68	0.0	0.0	0.0	0.0	28		-
Sakai Rinkai	Xylene	80	201	0.0	0.0	0.0	0.0	80		
Plant	Toluene	300	318	0.0	0.0	0.0	0.0	124	S	higa Pla
	Benzene	400	2.1	0.0	0.0	0.0	0.0	0.0		
	Water-soluble zinc compounds	1	0.0	9.0	0.0	0.0	0.0	472		
	Ethylbenzene	53	9,593	0.0	0.0	0.0	0.0	2,298		
Utsunomiva	Xylene	80	13,473	0.0	0.0	0.0	0.0	2,916		
Plant	1, 2, 4-trimethylbenzene	296	210	0.0	0.0	0.0	0.0	127		
	Toluene	300	110	0.0	0.0	0.0	0.0	67		
	Naphthalene	302	1,363	0.0	0.0	0.0	0.0	0.0		
	n-hexane	392	0.0	0.0	0.0	0.0	0.0	0.0		

Kyuhoji	Business	Center	•4

				Released	d amount		Transferre	d amount
Subs	stance name	Cabinet Order No.	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site
Vater-solubl	le zinc	1	0.0	0.0	0.0	0.0	0.0	850
Ethylbenzen	е	53	47,123	0.0	0.0	0.0	0.0	1,003
(ylene		80	49,532	0.0	0.0	0.0	0.0	3,706
, 2, 4-trime	thylbenzene	296	191	0.0	0.0	0.0	0.0	4,233
, 3, 5-trime	thylbenzene	297	1,102	0.0	0.0	0.0	0.0	22
Toluene		300	2,946	0.0	0.0	0.0	0.0	728
Vaphthalene	9	302	1,284	0.0	0.0	0.0	0.0	0.0
Nickel comp	ounds	309	0.0	0.0	0.0	0.0	0.0	843
Manganese compounds	and its	412	0.0	0.0	0.0	0.0	0.0	256
Methylenebi: diisocyanate	s (4,1-phenylene)	448	0.0	0.0	0.0	0.0	0.0	0.0
	Ethylbenzene	53	935	0.0	0.0	0.0	0.0	59
	Xylene	80	1,164	0.0	0.0	0.0	0.0	69
nding Service	Xylene	80	4,995	0.0	0.0	0.0	0.0	137
-	Toluene	300	1,206	0.0	0.0	0.0	0.0	332
nto Vender	Xylene	80	1,907	0.0	0.0	0.0	0.0	0.0
	Toluene	300	1,267	0.0	0.0	0.0	0.0	0.0
Styrene		240	21,831	0.0	0.0	0.0	0.0	0.0
Di-n-butyl pł	nthalate	354	0.0	0.0	0.0	0.0	0.0	69
Methylenebi diisocyanate	s (4,1-phenylene)	448	0.0	0.0	0.0	0.0	0.0	0.0

Mai

Supplemer Information

Data on KUBOTA group production sites in Japan

Item			Business site	KUBC (Sa)TA-C.I. akai)	KUBC (Oda)TA-C.I. awara)	KUBC (Too)TA-C.I. chigi)	KUBC Conc (Too	DTA Air litioner chigi)	KUBOTA Mac	Precision hinery	Nippor Inde	n Plastic ustry	Kyushu Che	KUBOTA emical
INPUT																	
			Unit	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ
Energy	Fossil fuel		Crude oil equivalent kL	72	2,783	124	4,798	244	9,475	246	9,553	748	28,995	64	2,484	2	66
	Purchased e	electricity	MWh	12,479	121,790	31,192	302,270	21,215	204,340	2,347	23,402	13,010	126,282	14,558	141,046	7,609	73,219
	Т	otal	Crude oil equivalent kL	3,214	124,573	7,922	307,068	5,516	213,815	850	32,955	4,006	155,277	3,703	143,538	1,891	73,286
Water usag	9		thousand m ³	-	18	3	38	2	74	6	69	1	17	2	01		6
OUTPUT																	
CO ₂ emissio	n CO2 emissio energy sour	ons from ces	tons CO _{2e}	5,	293	14	,728	10,	497	1,	569	7,	334	7,6	680	З,	999
	Discharge a	mount	tons	1	22	8	33	2	26	1	69	4	71	3	33		18
Waste	Recycling ra	atio	%	9	9.9	9	9.8	10	0.0	10	0.0	99	9.8	99	9.1	10	0.0
	Main smoke	e and soot gene	erating facilities ^{*2}					Bo	ilers	Bo	oilers						
		l	Unit					Control Co content cor	ntrol Itent Measurement	Control Co content co	ntrol Measurement						
Exhaust gas*1	SOx	K-value co	ontrol: m ³ N/h	No smok	e and soot	No smok	e and soot	K-value control 14	4.5 1.0	Use of tov zero sulf	wn gas with fur content	No smok	e and soot	No smok	e and soot	No smok	e and soot
Ŭ	NOx	Concentratio	on control: ppm	generaur	ig iaciilles	generaur	ig raciilles	Concentration	- 68	Concentration 2	30 Less than 5	generau	iy iaurilles	generaui	ig raunities	generatii	ig iaunities
	Soot and dust	Concentration	n control: g/m ³ N					Concentration	Less than 0.005	Concentration control	0.2 Less than 0.005						

*1 K-value control and concentration control: Control value (including agreed value) of major smoke and soot generating facilities and the measurement value (maximum value). *2 Smoke and soot generating facilities: Those subject to the laws concerning emissions into the atmosphere.

			Unit	Control value	Measurement	Control value	Measurement	Control value	Measurement								
		рH	Minimum value, Maximum value	5.8~8.6	6.6, 7.7	5.8~8.6	7.3, 8.3	5.8~8.6	8.0, 8.3	5.8~8.6	7.3, 7.8	-	—	5.8~8.6	7.0, 7.4	-	_
		BOD	mg/L	25	4	60	1.4	20	3.1	30	3.2	_	_	160	1.6	_	_
		COD	mg/L	25	6	60	1.5	_	_	_	_	_	_	160	1	-	_
	Put	Nitrogen	mg/L	60	42	120	0.5	60	0.84	_	_	_	_	_	_	_	_
	olic /	Phosphorus	mg/L	8	5.6	16	Non-detected	1	Non-detected	—	_	_	_	_	_	_	_
_	vate	Hexavalent chromium	mg/L	0.5	Non-detected	0.5	Non-detected	0.1	Non-detected	0.1	Non-detected	_	_	_	_	_	_
Drainage	ar ar	Lead	mg/L	0.1	0.07	0.1	Non-detected	0.1	0.06	0.1	Non-detected	—	_	0.1	Non-detected	_	_
	eas	COD, total emission control	kg/day	—	—	—	—	—	—	—	—	_	—	_	—	-	—
ω		Nitrogen, total emission control	kg/day	_	_	_	_	_	_	_	_	_	—	_	_	-	_
		Phosphorus, total emission control	kg/day	_	_	_	_	_	_	_	_	_	—	-	_	-	_
	Sew	рH	Minimum value, Maximum value	_	—	_	—	_	_	_	—			-	—		
	erag	BOD	mg/L	_	_	_	_		_	_	_	No speci	fic facilities	_	_	No speci	fic facilities
	1e lin	COD	mg/L	_	_	—	_	_	_	_	—			_	_		
	les	SS	mg/L		_	_	_			_	_			_	_		

*3 Concentration control: Control value (including agreed value) by plant and the measurement value (maximum value).

Results of PRTR reporting (Unit: kg/year)

		O alsia at O alar		Released	l amount		Transferre	d amount
Business site	Substance name	No.	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site
	Xylene	80	135	0.0	0.0	0.0	0.0	0.0
NUBUTA-U.I. (Jakal)	Lead compounds	305	1.0	0.0	0.0	0.0	0.0	16
	Organic tin compounds	239	0.0	0.0	0.0	0.0	0.0	8.6
KUBUTA-C.I. (Odawara)	Lead compounds	305	0.0	0.0	0.0	0.0	0.0	121
	Organic tin compounds	239	0.0	0.0	0.0	0.0	0.0	2.2
KUBOTA-C.I. (Tochigi)	Lead compounds	305	0.0	0.0	0.0	0.0	0.0	240
	Methylnaphthalene	438	13	0.0	0.0	0.0	0.0	0.0
KUBOTA Air Conditioner	Ferric chloride	71	0.0	0.0	0.0	0.0	0.0	0.0
(Tochigi)	Methylenebis (4, 1-phenylene) diisocyanate	448	0.0	0.0	0.0	0.0	0.0	0.0
KUBOTA Precision Machinery	N,N-Dicyclohexylamine	188	0.0	0.0	0.0	0.0	0.0	1,205
Nippon Plastic Industry	Lead compounds	305	3.5	0.0	0.0	0.0	0.0	5.8
Kyushu KUBOTA	Organic tin compounds	239	0.0	0.0	0.0	0.0	0.0	1.1
Chemical	Lead compounds	305	1.3	0.0	0.0	0.0	0.0	88

Data on KUBOTA Group Overseas Production Sites

	Re	egion				North A	America		Europe							
Item			Business site	Kubota Mar America (nufacturing of Corporation	Kubota Equipment	Industrial Corporation	Kubota I Canada C	Materials orporation	Kubota Bai Grr	umaschinen hbH	Kvernela Operations	nd Group Norway AS	Kvernelar Soest	nd Group GmbH	
INPUT																
			Unit	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	
Energy	Fossil fuel		Crude oil equivalent kL	1,362	52,797	1,688	65,439	2,753	106,705	588	22,795	2,787	108,030	409	15,856	
	Purchased e	electricity	MWh	22,570	225,019	15,859	158,109	17,200	171,484	2,159	21,527	39,501	393,827	2,281	22,737	
	Te	otal	Crude oil equivalent kL	7,168	277,816	5,768	223,548	7,177	278,189	1,144	44,322	12,948	501,858	996	38,593	
Water usage			thousand m ³	6	61	1	6	4	6		6	28		1	2	
OUTPUT																
CO ₂ emission	CO ₂ emissio energy source	ons from ces	tons CO _{2e}	17	280	12,	925	8,3	26	2,1	176	6,4	114	1,8	304	
)A/anta	Discharge a	mount	tons	1,	714	82	28	2,7	99	2	79	34	49	27	76	
vvaste	Recycling ra	itio	%	8	8.7	97	7.8	17	.7	95	5.0	93	3.7	89	9.3	
	Main smoke	and soot gene	erating facilities ^{"2}	Bo	ilers											
		l	Jnit	Control Co content va	ntrol Measurement											
Exhaust gas*1	SOx	Concentration	n control: m ³ N/h	Use of town sulfur	gas with zero content	No smoke	e and soot	No smoke	and soot	No smoke	e and soot	No smoke	e and soot	No smoke	and soot	
	NOx	Concentratio	on control: ppm	Concentration — 34		generaung lacilities		generaung facilities		goneraun	9 10011100	generaun	9 10011105	ganaratin	9 10011100	
	Soot and dust	Concentration	n control: g/m ³ N	Concentration control												

*1 Concentration control: Control value (including agreed value) of major smoke and soot generating facilities and the measurement value (maximum value). *2 Smoke and soot generating facilities: Those subject to the laws concerning emissions into the atmosphere.

			Unit	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement
		pН	Minimum value, Maximum value	_	_	_	_	_	_	_	_	_	_	_	_
		BOD	mg/L	_	_	_	_	_	_	_	_	_	-	_	_
		COD	mg/L	_	_	_	_	_	_	_	_	_	_	—	_
	Pub	Nitrogen	mg/L	—	—	—	—	—	—	—	—	—	—	—	_
	lic	Phosphorus	mg/L	_	_	_	_	_	_	_	_	_	_	—	_
_	vate	Hexavalent chromium	mg/L	_	-	—	—	—	—	—	—	—	_	—	_
Draii	er ar	Lead	mg/L	_	-	—	—	—	—	—	—	—	_	—	_
าage	eas	COD, total emission control	kg/day	_	_	_	—	—	_	—	_	—	—	—	_
ω		Nitrogen, total emission control	kg/day	_	_	—	—	_	_	_	—	_	_	_	—
		Phosphorus, total emission control	kg/day	_	_	_	_	_	_	_	_	_	_	_	_
	Sew	pН	Minimum value, Maximum value	6.0~9.5	7.5	6.0~9.0	8.3			6.5~9.0	6.5, 8.8				
	ərag	BOD	mg/L	900	70.1	250	26.8	(Sewage discharge)		_	_	(Sewage of	discharge)	(Sewage of	discharge)
	10 Iii	COD	mg/L	-	-	—	_			1,000	230	((Gewage discharge)	
	Sel	SS	mg/L	900	28.4	250	23.0			_	_				

*3 Concentration control: Control value (including agreed value) by plant and the measurement value (maximum value). Results of chemical substances reporting

				0		
eportina to	National	Pollutant	Release	Inventory	(Canada)	(Unit:

Reporting to National Pollutant Release Inventory (Canada) (Unit: kg/year)										
Business site	Substance name	Control law number	Release quantity	Amount of off-site recycled waste						
	Chromium (and its compounds)	NA-04	185	68						
	Manganese (and its compounds)	NA-09	189	4,374						
ota Materials Canada Corporation	Nickel (and its compounds)	NA-11	73	189						
	PM10-Particulate Matter≦10µm	NA-M09	16,077	0.0						
	PM2.5-Particulate Matter≦2.5µm	NA-M10	15,996	0.0						
s Release Inventory (TRI) Program (U.S.	EPA) (Unit: kg/year)									
Business site	Substance name	CAS Number	amount of emissions	Recycled Off-site						
Business site	Substance name Chromium	CAS Number 7440-47-3	On-site disposal and amount of emissions 0.15	Recycled Off-site 0.0						
Business site	Substance name Chromium Manganese	CAS Number 7440-47-3 7439-96-5	On-site disposal and amount of emissions 0.15 97.98	Recycled Off-site 0.0 0.03						
Business site	Substance name Chromium Manganese Nickel	CAS Number 7440-47-3 7439-96-5 7440-02-0	On-site disposal and amount of emissions 0.15 97.98 0.06	Old Old 0.0 0.03 0.0 0.03						
Business site	Substance name Chromium Manganese Nickel Chromium	CAS Number 7440-47-3 7439-96-5 7440-02-0 7440-47-3	0n-site disposal and amount of emissions 0.15 97.98 0.06 545	Output Output 0.0 0.03 0.0 0.03 0.0 19,105						
Business site	Substance name Chromium Manganese Nickel Chromium Manganese	CAS Number 7440-47-3 7439-96-5 7440-02-0 7440-47-3 7439-96-5	0n-site disposal and amount of emissions 0.15 97.98 0.06 545 2,225	Output Output 0.0 0.03 0.0 0.03 0.0 19,105 76,421 76,421						
Business site Industrial Equipment Corporation Manufacturing of America Corporation	Substance name Chromium Manganese Nickel Chromium Manganese Nickel	CAS Number 7440-47-3 7439-96-5 7440-02-0 7440-47-3 7439-96-5 7440-02-0	On-site disposal and amount of emissions 0.15 97.98 0.06 545 2,225 585	Recycled Off-site 0.0 0.03 0.0 19,105 76,421 19,232						
Business site a Industrial Equipment Corporation a Manufacturing of America Corporation	Substance name Chromium Manganese Nickel Chromium Manganese Nickel Ethylene glycol	CAS Number 7440-47-3 7439-96-5 7440-02-0 7440-47-3 7439-96-5 7440-02-0 107-21-1	On-site disposal and amount of emissions 0.15 97.98 0.06 545 2,225 585 0.0	Recycled Off-site 0.0 0.03 0.0 19,105 76,421 19,232 0						

Man

П

mic Rep

Data on KUBOTA Group Overseas Production Sites (Continued from page 50-19)

Region Europe																	As	sia										
Item		Business site	Kverneland G Nieuw-Venne	àroup p B.V.	Kverneland Kertemin	d Group nde AS	Kubota Machinery (Agricultural SUZHOU) Co., _td.	Kubota C Machinery (M	onstruction /UXI) Co., Ltd.	Kubota Environmenta (ANHUI)	Guozhen al Engineering Co., Ltd.	SIAM KUBO (Head	TA Corporation quarter)	SIAM KUBO (Amata N	A Corporation korn Plant)	N SIAM K Metal Te	KUBOTA chnology	KUBOTA Eng	ine (Thailand)	Kubota Precis (Tha	sion Machinery ailand)	P.T.Kubota	Indonesia	P.T.Metec S	Semarang	Kubota Sa Comj	udi Arabia bany
INPUT																												
		Unit	Volume of use col	Heat oversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ
Fnerov	Fossil fuel	Crude oil equivalent kL	946	36,664	1,226	47,513	1,499	58,085	68	2,640	13	520	237	9,199	244	9,475	16	632	98	3,813	15	595	342	13,240	500	19,363	3,240	125,592
Lifergy	Purchased electricity	MWh	2,348	23,405	5,680	56,630	9,198	91,704	2,130	21,238	2	23	6,778	67,580	21,215	204,340	21,216	211,526	3,045	30,360	231	2,306	2,426	24,192	5,548	55,312	0	0
	Total	Crude oil equivalent kL	1,550	60,069	2,687	104,143	3,865	149,789	616	23,878	14	543	1,981	76,779	5,516	213,815	5,474	212,158	882	34,173	75	2,901	966	37,432	1,927	74,675	3,240	125,592
Water usage		thousand m ³	8		26	6		90	6	63	:	3		58	1	37	7	71	1	3		7	3	3	44	4	7	
OUTPUT	Π																											
CO ₂ emission	CO2 emissions from energy sources	tons CO _{2e}	2,762		4,84	42	10),188	1,	739	3	37	4,	008	10,497		10,	,930	1,8	320	1:	59	2,715		5,291		8,419	
14/	Discharge amount	tons	306		247	7	(602	5	52	(0	3	01	5,	039	8,9	969	4	0	4	40	g)	31	3	62	3
vvaste	Recycling ratio	%	94.7		97.6	6	8	3.5	7	7.1	-	_	9	5.6	9	1.6	82	2.1	82	2.5	74	4.0	96	.5	92	.9	0.	0
	Main smoke and soot	Unit	No smoke and soot	concrating	No smoko and se	oot concrating	Control C content V	oilers ontrol value Measureme	Drying Control Co content va Concentration	furnaces Introl alue Measuremen	No smoko and	soot concrating	Drying Control Co content v Concentration	furnaces ontrol alue Measuremer	Drying Control Content v Concentration	furnaces ntrol Alue Measuremer	Electric I nt Control Co content va	Furnaces Introl Alue Measuremer	t No smoko and	soot apporating	No smoko and	I soot apporation	No smoko and s	soot apporating	Drying fu Control Con content val	urnaces trol ue Measurement	No smoko and i	soot apporating
Exhaust gas	NOx Concert	entration control: ppm	facilities	generating	faciliti	ies	Concentration	100 28.3	Concentration		faci	ilities	control Concentration	- 4	Concentration	00 1.25	Concentration		- facil	ities	faci	ilities	facili	ities	(mg/m ³) 10	0 23.04	facili	ities
	Soot and dust Concent	ntration control: g/m ³ N					Concentration control	50 34	Concentration control				Concentration control (0.1 0.032	Concentration control C	32 0.013	Concentration control 0.	.02 0.0006	-						Concentration control 0.3	35 0.016		
*1 Concen *2 Smoke	tration control: Cor and soot generatin	ontrol value (includ ng facilities: Thos	ling agreed value e subject to the la) of major s aws concer	smoke and so rning emissior	oot generatin ns into the a	g facilities ar tmosphere.	nd the measu	rement value ((maximum val	ue).				- <u> </u>													
		Unit	Control value Me	easurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement

			Unit	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement												
		pН	Minimum value, Maximum value	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	-	-	_	_	_	6.0~9.0	7.0	6.0~9.0	8.5	-	_
		BOD	mg/L	_	-	_		_	-	_	_	-	_	_		_	-	_	-	-	-	—	_	100	17.0	100	86.0	-	_
		COD	mg/L	_	-	_		_	-	_	_	-	_	_		_	-	_	-	-	-	—	_	250	39.0	250	153.3	-	_
	Pub	Nitrogen	mg/L	_	-	_	_	_	-	_	_	-	_	_	_	_	-	_	_	-	-	_	_	_	_	_	_	-	_
	olic	Phosphorus	mg/L	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_
_	vate	Hexavalent chromium	mg/L	_	-	_		_	-	_	_	-	_	_		_	-	_	-	-	-	—	_	0.1	0.0003	0.5	Non-detected	-	_
)rair	er ar	Lead	mg/L	_	-	—	_	_		—	—	-	_	_	_	—	-	_	-	-		—	_	0.1	0.005	0.1	Non-detected	-	—
1age ^{*3}	eas	COD, total emission control	kg/day	_	_	_	_	-	_	-	_	-	-	_	-	_	-	_	-	-	_	_	_	—	_	—	_	_	_
		Nitrogen, total emission control	kg/day	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-		_	—	_	_	_	—	_	_	_
		Phosphorus, total emission control	kg/day	-	_	_	-	-	_	-	_	-	-	_	_	_	_	_	-	-	_	_	_	—	_	_	_	-	_
	Sew	pН	Minimum value, Maximum value											6.0~9.0	7.4, 9.0									—	-	—	_		
	ərag	BOD	mg/L	(Sewage	discharge)	(Sewage	discharge)	(Sewage	discharge)	(Sewage of	discharge)	(Sewage o	discharge)	450	280	(Sewage	discharge)	(No external w	ater discharge)	(No external v	vater discharge)	(Sewage	discharge)	_	_	_	_	(Sewage	e discharge)
	le lir	COD	mg/L	(11.1.1.0)		(*****)					5.		J	600	259	(*****)*			5		5,			_	_	_	_		5.,
	les	SS	mg/L											_	_									_	_	_	_		

*3 Concentration control: Control value (including agreed value) by plant and the measurement value (maximum value).

Economic Report

Social Report

Manager

ent

Calculation Standards of Environmental Performance Indicators in KUBOTA REPORT 2013

Er	nvironmental performance indicators	Unit	Calculation method										
			[Calculation formula]	Amount of purchased el	ectricity x	per-unit heat value + ∑[amount of each fuel consumed x per-unit heat value							
	Total energy input ^{*1}	TJ		 Per-unit heat value is de Rational Use of Energy 	termined	in accordance with the Enforcement Regulation for the Law Concerning the							
	(10.10 0)		[Calculation scope]	 Purchased electricity an Transportation fuel used 	d fossil fu in distrib	el used at business sites ution (business sites in Japan)							
			[Calculation formula]	 Amount of purchased el sites x per-unit heat valu gas emissions 	ectricity x e of each	CO ₂ emission coefficient $+\Sigma$ [amount of each fuel consumed at business fuel x CO ₂ emission coefficient of each fuel] + non-energy source greenhouse							
				 Non-energy source gree greenhouse gas emission 	enhouse g ins	as emissions = CO ₂ emissions from non-energy sources + non-CO ₂							
				 The method for calculati Calculating Greenhouse 	ing non-e Gas Emi	nergy source greenhouse gas emissions is based on the Guidelines for soins from Businesses of Japan's Ministry of the Environment.							
				[CO ₂ emission coefficients FY1991	Based c	n the Report on Survey of Carbon Dioxide Emissions (Japan's Environment							
					Environr CO ₂ em	nent Agency 1993) issions=carbon equivalent (tons C) x 3.664							
	CO_2 omissions ^{*1}	kilotopo COo		FY2009	Fuel:	Based on the Manual for Calculation and Report of Greenhouse Gas Emissions (Ver.2.4) (Japan's Ministry of the Environment and Ministry of Economy Trade and Industry March 2000)							
	CO2 emissions	KIIOLOI IS GO2e			Electrici	Data for Japan are emission coefficients published by electricity utilities Overseas data is based on the Report on the CO ₂ Emissions Intensity of the							
				From FY2010 to FY2013	Fuel:	Power Sector of Various Countries -Ver.3 (the Japan Electrical Manufacturers' Association June 2006) Based on the Manual for Calculation and Report of Greenhouse Gas							
						Emissions (Ver.2.4) (Coefficients used after revision in March 2010; Japan's Ministry of the Environment and Ministry of Economy, Trade and Industry							
					Electrici	VIII A A A A A A A A A A A A A A A A A A							
Ene					mhou oo c	Overseas data are emission coefficients of respective countries published in the Greenhouse Gas Protocol Initiative							
ergy a			Calculation scope	as data up to FY2011 are for business sites in Japan only missions from January to December included in non-energy source greenhouse									
nd C(tons CO2e/	[Calculation formula]	gases Galculation formula Group-wide CO2 emissions per unit of sales = total CO2 emissions / consolidated net sale KUROTA Corporation production site CO2 emissions per unit of sales = KUROTA Corporation									
D2-re	CO2 emissions per unit of	DIIIION¥		CO ₂ emissions / KUBO1 (Group-wide) CO ₂ emiss	A Corpor	ation non-consolidated net sales							
lated	sales	%		Coroup-wole Co2 emissions per unit of sales for each riscal year / + 2009 CO2 emissions per unit of sale Co2 (KUBOTA Corporation production site) KUBOTA Corporation production site CO2 emissions per unit of sale									
				each fiscal year / KUBO (as shown in the graph o	TA Corpo on page 4	ration production site CO ₂ emissions per unit of sales in FY1991 x 100 9 of KUBOTA REPORT 2013)							
	Freight traffic	ton-km	Calculation formula Calculation scope	 ∑ [Heavy freight transportation (tons) × distance traveled (km)] Transportation in Japan 									
			[Calculation formula]	 Truck transportation 	Fruck transportation Fuel consumption during transportation = freight traffic x fuel consumption per ton-kilometer x per-unit hea								
				Other than truck	44 / 12 Fuel cor	ssions = tuel consumption during transportation $x CO_2$ emission coefficient x sumption during transportation = freight traffic x fuel consumption per ton-							
	CO2 emissions during distribution	kilotons CO _{2e}		transportation	kilometer x per-unit heat value CO2 emissions = freight traffic x CO2 emissions per ton-kilometer by means of transportation								
				The method of calculation Report of Greenhouse G	on is base	d on the ton-kilometer method stipulated under the Manual for Calculation and ions (Ver.2.4) (Japan's Ministry of the Environment and Ministry of Economy,							
			[Calculation scope] • Transportation in Japan										
	CO ₂ emissions during	tons CO _{2e} / billion¥	[Calculation formula]	CO2 emissions during d	istributior	/ consolidated net sales							
	sales	%	[Calculation formula]	• CO ₂ emissions per unit (as shown in the graph of	of sales o on page 5	f each fiscal year / CO ₂ emissions per unit of sales in FY2009 x 100 0-ⓒ of KUBOTA REPORT 2013)							
	Scope 3 emissions		[Calculation formula]	 Disposal and treatment Employee business trips 	of waste: s: CO2 en	CO ₂ emissions = Σ [(amount of waste discharge by type) x (emissions per unit)] issions = Σ [(transportation expenses paid by mode of transport) x (emissions							
	(disposal and treatment of	kilotons CO _{2e}		 The calculation method throughout the Supply C 	is based Chain (Ver.	on the Basic Guidelines regarding the Calculation of Greenhouse Gas Emissions 2.0) and the Emissions per Unit Database for the Purpose of Calculating the							
	waste; employee business trips)			Greenhouse Gas and Ot of the Environment and	ther Emis Ministry o	sions of Organizations throughout the Supply Chain (Ver. 2.0) (Japan's Ministry f Economy, Trade and Industry March 2013) ensee nail is the norticing travelet based on airling tickets (domestic and							
	Amount of worth atta		Concontinuity Scope	international) and railway	/ tickets (Jomestic) issued by Group companies							
	discharge ^{*1}	tons	[Calculation formula]	Sales of valuable resource	ces + am	ount of waste discharge							
	Amount of waste discharge ^{*1}	tons	[Calculation formula]	 Amounts of resource red Amount of industrial was 	cycling ar ste discha	d waste reduction + landfill disposal rge + amount of general waste discharged from business activities							
	Waste discharge per unit	tons CO _{2e} / billion¥	[Calculation formula]	Amount of waste discha	irge / con	solidated net sales							
	of sales*1	%	[Calculation formula]	Waste discharge per un (as shown in the graph of	it of sales on page 4	of each fiscal year / waste discharge per unit of sales in FY2009 x 100 9 of KUBOTA REPORT 2013)							
Wa	Amount of landfill disposal*1	tons	[Calculation formula]	Direct landfill + final land	fill followi	ng external intermediate treatment							
ste-re	Ratio of business sites that		[Calculation formula]	 Number of the production achieved the zero emission 	on sites c ions (lanc	ertified by the Environmental Protection Department of KUBOTA as having fill ratio of 0.5% or less) / number of the production sites in Japan and overseas							
elated	have achieved zero emissions	%		 x 100 Landfill ratio(%) = amou Number of production s 	unt of land ites in Jap	tfill disposal / amount of waste, etc. discharge x 100 oan and overseas: FY2009~FY2011: 30 sites, FY2012: 33 sites, FY2013: 39							
	Ratio of recycled waste (excluding volume	%	[Calculation formula]	(Sales of valuable resourt treatment by outside contractions)	rces + res ntractors)	ource recycling) / (waste, etc. discharge - volume reduction in intermediate x 100							
	Amount of construction	tons	[Calculation formula]	Amount of construction materials) + sales of valu	waste dis iable resc	charge (Including construction waste other than specific construction urces (generated from construction)							
	waste, etc. discharge	-	[Calculation scope]	Business sites in Japan		ourse required , amount reduced (with back secure W (amount of							
	construction waste	%	Calculation formula	 (Sales of valuable resources) construction waste, etc. 	rces + res discharg	ource recycling + amount reduced (with heat recovery)) / amount of e (including sales of valuable resources) x 100							

Environmental performance indicators		Unit	Calculation method
	Water consumption *1	million m ³	[Calculation formula] • Total amount of service water, industrial water and groundwater consumption
	Water consumption per	m ³ /million¥	[Calculation formula] • Water consumption / consolidated net sales
<	unit of sales	%	[Calculation formula] • Water consumption per unit of sales for each fiscal year / Water consumption per unit of sales for FY2009 x 100 (as shown in the graph on page 49 of KUBOTA REPORT 2013)
/ater-relate	Wastewater discharge (public water areas, sewage lines) ⁺¹	million m ³	[Calculation formula] • Total wastewater discharge to public water areas and sewage lines (including rain and spring water)
đ	Amount of COD, nitrogen and phosphorus discharge	tons	 [Calculation formula] COD, nitrogen or phosphorous concentration (mg/L) x amount of effluent discharged to public water area (m³) x 10⁻⁶ Business sites subject to total emission control in Japan
	Amount of recycled water	million m ³	[Calculation formula] • Amount of water purified in on-site effluent treatment facilities and recycled (excluding the recycled cooling water used)
	Amount of PRTR- designated substances handled	tons	 [Calculation formula] • Total amount of chemical substances handled, which are designated as Class I under the Act on Confirmation, etc. of Release Amounts of Specific Chemical Substances in the Environment and Promotion of Improvements to the Management Thereof (the PRTR Law) whose amount handled by each business site is one ton or more (or 0.5 ton or more for Specific Class I Designated Chemical Substances) per year [Calculation scope] • Business sites in Japan (business site subject to legal notification only) • FY2013 data includes designated chemical substances derived from recycled resources in accordance with revisions to the Manual for PRTR Release Estimation Methods in the Steel Industry (Ver. 12 FY2013 use)
	Amount of PRTR- designated substances released and transferred	tons	 [Calculation formula] Total release and transfer amount of the chemical substances which are designated as Class I under the PRTR Law and whose annual total amount handled by each business site is one for or more (or 0.5 ton or more in case of Specific Class I Designated Chemical Substances). Amount released = amount discharged to the atmosphere + amount discharged to public water areas + amount discharged to soil + amount discharged to the atmosphere + amount transferred out of the business site as waste Amount transferred - amount discharged to sewerage + amount transferred out of the business site as waste The amount of each substance released and transferred is calculated in accordance with Manual for PRTR Release Estimation Methods Ver. 4.1 (March 2011) of the Ministry of the Environment and the Ministry of Economy, Trade and Industry, and Manual for PRTR Release Estimation Methods in the Steel Industry Ver. 12 (March 2013) of the Japan Iron and Steel Federation. [Calculation scope]
	Amount of PRTR-	kg/billion¥	[Calculation formula] • Amount of PRTR-designated substances released and transferred / consolidated net sales
Chemica	designated substances released and transferred per unit of sales	%	[Calculation formula] • PRTR-designated substances released and transferred per unit of sales of each fiscal year / PRTR-designated substances released and transferred per unit of sales in FY2009 x 100 (as shown in the graph on page 50 of KUBOTA REPORT 2013)
al substance-relat	Amount of chemical substances handled ¹¹	tons	 [Calculation formula] • Total amount of chemical substances handled at business sites covered by laws and regulations + the total amount of VOCs handled [Calculation scope] • Overseas business sites • The subject laws and regulations are the Toxics Release Inventory (TRI) Program, US EPA, the European Pollutant Release and Transfer Register (E-PRTR), and Reporting to the National Pollutant Release Inventory (Canada) • VOCs are toluene; ethylbenzene; xylene; 1, 2, 4-trimethylbenzene; 1, 3, 5-trimethylbenzene that are handled in amounts of one ton or more per year (only toluene, ethylbenzene, xylene in FY2012)
be	Chemical substance released ⁻¹	tons	[Calculation formula] • The total amount of chemical substances released at business sites covered by laws and regulations + the total amount of VOCs released [Calculation scope] • The same scope of calculation as the amount of chemical substances handled
	SOx emissions *2	tons	 [Calculation formula] • Amount of fuel consumed (kg) x sulfur content in the fuel (Wt %) / 100 x 64 / 32 x [(1 - desulphurization efficiency) / 100] x 10⁻³, or amount of SOx emitted per hour (m³N/h) x annual operation hours of the relevant facility (h) x 64 / 22.4 x 10⁻³ [Calculation scope] • Until FY2010, the smoke and soot generating facilities of business sites in Japan as defined by the Air Pollution Control Law. • From FY2011, the facilities of overseas business sites subject to the law are included
	NOx emissions *2	tons	 [Calculation formula] • NOx concentration (ppm) x 10⁻⁶ x amount of gas emitted per hour (m³N/h) x annual operation hours of the relevant facility (h) x 46 / 22.4 x 10⁻³ [Calculation scope] • The same scope of calculation as SOx emissions
	Soot and dust emissions*2	tons	 [Calculation formula] Soot and dust concentration (g/m³N) x amount of gas emitted per hour (m³N/h) x annual operation hours of the relevant facility (h) x 10⁻⁶ [Calculation scope] The same scope of calculation as SOx emissions
	Ratio of models with reduced RoHS- designated substances	%	[Calculation formula] • Ratio of the value of shipped products that contain RoHS-designated substances (lead, hexavalent chromium, mercury, cadmium, PBB and PBDE) in less than the threshold limits (except products used for applications exempted from the RoHS Directive and ELV Directive) against the total value of products shipped (excluding plants, facilities, construction, services and software development).
	CO ₂ eco-efficiency indicators	million¥/ tons CO2e	[Calculation formula] • Consolidated net sales / CO ₂ emissions
0	Waste eco-efficiency indicators	million¥/ hundred kg	[Calculation formula] • Consolidated net sales / amount of waste discharge
ther	Chemical substance eco-efficiency indicators	million¥/kg	[Calculation formula] • Consolidated net sales / total amount of PRTR-designated substances released and transferred by production sites in Japan
	Green purchasing ratio	%	 [Calculation formula] • Amount spent to purchase eco-friendly office supplies (paper, stationery, etc.) / total amount spent to purchase items subject to green purchasing x 100 • Green products are items purchased through the office supply procurement site operated by Group companies [Calculation scope] • Business sites in Japan

*1 Of the overseas subsidiaries added to the scope of compilation in FY2013, calculations for the Kverneland group are based on estimates, except for its four major production companies (covering more than 80% of the revenues in FY2013 of the Kverneland group production subsidiaries). *2 Of the overseas subsidiaries added to the scope of compilation in FY2013, only the data for the four major production companies of the Kverneland group (covering more than 80% of the revenues in FY2013 of the Kverneland group production subsidiaries) are included. This is because estimates are difficult to ascertain for the indicators in Note 2 due to their attributes.

Mar

Re

SS

ial Rep on

Environ Report